Journal of Materials Science

, Volume 44, Issue 1, pp 122–128 | Cite as

Sol-gel synthesis of alumina, titania and mixed alumina/titania in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulphonyl) amide

  • Hala K. Farag
  • Mohammad Al Zoubi
  • Frank EndresEmail author


In this paper we report on the synthesis of alumina, titania and mixed alumina–titania in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulphonyl) amide [Py1,4]TFSA via sol-gel methods using aluminium isopropoxide and titanium isopropoxide as precursors. Our results show that the as-synthesized alumina is mainly mesoporous boehmite with an average pore diameter of 3.8 nm. The obtained boehmite is subject to a phase transformation into γ-Al2O3 and δ-Al2O3 after calcinations at 800 and 1,000 °C, respectively. The as-synthesized TiO2 shows amorphous behaviour and calcination at 400 °C yields anatase which undergoes a further transformation to rutile at 800 °C. The as-prepared alumina–titania powders are amorphous and transformed to rutile and α-Al2O3 after calcination at 1,000 °C TiO2. The obtained alumina–titania has a higher surface area than those of alumina or titania. The surface area of the as-synthesized alumina–titania was found to exceed 486 m2 g−1, whereas the surface areas of the as-synthesized boehmite and titania were around 100 m2 g−1, respectively.


Ionic Liquid Rutile Boehmite Anatase Phase Differential Thermal Analysis Curve 



The authors would like to thank Prof. Dr Markus Antonietti, Max-Plank Institute, Potsdam, Germany, for gas sorption measurements and valuable advices.


  1. 1.
    Yoldas BE (1975) J Mater Sci 10:1856. doi: CrossRefGoogle Scholar
  2. 2.
    Tsai MT, Shih HC (1993) J Mater Sci Lett 12:1025CrossRefGoogle Scholar
  3. 3.
    Saha S (1994) J Sol-Gel Sci Technol 3:117CrossRefGoogle Scholar
  4. 4.
    Le Bihan L, Dumeignil F, Payen E, Grimblot J (2002) J Sol-Gel Sci Technol 24:113CrossRefGoogle Scholar
  5. 5.
    Park YK, Tadd EH, Zubris M, Tannenbaum R (2005) Mater Res Bull 40:1506CrossRefGoogle Scholar
  6. 6.
    Reidy DJ, Holmes JD, Morris MA (2006) Ceram Int 32:235CrossRefGoogle Scholar
  7. 7.
    Venkatachalam N, Palanichamy M, Murugesan V (2007) Mater Chem Phys 104:454CrossRefGoogle Scholar
  8. 8.
    Qiu S, Kalita SJ (2006) Mat Sci Eng A 435–436:327CrossRefGoogle Scholar
  9. 9.
    Kaneko EY, Pulcinelli SH, Teixeira da Silva V, Santilli CV (2002) Appl Catal A Gen 235:71CrossRefGoogle Scholar
  10. 10.
    Jung Y-S, Kim D-W, Kim Y-S, Park EK, Baeck S-H (2008) J Phys Chem Solids 69:1464CrossRefGoogle Scholar
  11. 11.
    Linacero R, Rojas-Cervantes ML, De D. Lopez-Gonzalez J (2000) J Mater Sci 35:3269. doi: CrossRefGoogle Scholar
  12. 12.
    Firestone MA, Dietz ML, Seifert S, Trasobares S, Miller DJ, Zaluzec NJ (2005) Small 1:754CrossRefGoogle Scholar
  13. 13.
    Liu Y, Wang M, Li Z, Liu H, He P, Li J (2005) Langmuir 21:1618CrossRefGoogle Scholar
  14. 14.
    Zhou Y, Antonietti M (2003) J Am Chem Soc 125:14960CrossRefGoogle Scholar
  15. 15.
    Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Angew Chem Int Ed 43:4988CrossRefGoogle Scholar
  16. 16.
    Park H, Yang SH, Jun Y-S, Hong WH, Kang JK (2007) Chem Mater 19:535CrossRefGoogle Scholar
  17. 17.
    Zhou Y, Schattka JH, Antonietti M (2004) Nano Lett 4:477CrossRefGoogle Scholar
  18. 18.
    Choi H, Kim YJ, Varma RS, Dionysiou DD (2006) Chem Mater 18:5377CrossRefGoogle Scholar
  19. 19.
    Yoo KS, Lee TG, Kim J (2005) Microporous Mesoporous Mater 84:211CrossRefGoogle Scholar
  20. 20.
    Farag HK, Endres F (2008) J Mater Chem 18:442CrossRefGoogle Scholar
  21. 21.
    Al Zoubi M, Farag HK, Endres F (2008) Aust J Chem 61:704CrossRefGoogle Scholar
  22. 22.
    Kapper H, Endres F, Djerdj I, Antonietti M, Smarsly BM, Maier J, Hu Y-S (2007) Small 3:1753CrossRefGoogle Scholar
  23. 23.
    Goodboy KP, Downing JC (1990) In: Hart LD (ed) Production, process, properties and applications of activated and catalytic aluminas. The American Ceramic Society Inc., Westerville, Ohio, p 93Google Scholar
  24. 24.
    Barayai KJ, Deacon GB, MacFarlane DR, Pringle JM, Scott JL (2004) Aust J Chem 57:145CrossRefGoogle Scholar
  25. 25.
    Wooster TJ, Johanson KM, Fraser KJ, MacFarlane DR, Scott JL (2006) Green Chem 8:691CrossRefGoogle Scholar
  26. 26.
    Mackenzie KJD, Temuujin J, Smith ME, Angeren P, Kameshima Y (2000) Thermochim Acta 359:87CrossRefGoogle Scholar
  27. 27.
    Yu J, Zhao X, Zhao Q (2000) Thin Solid Films 379:7CrossRefGoogle Scholar
  28. 28.
    Jing LQ, Sun XJ, Cai WM, Xu ZL, Du YG, Fu HG (2003) J Phys Chem Solids 64:615CrossRefGoogle Scholar
  29. 29.
    Linacero R, Rojas-Cervantes ML, De D. Lopez-Gonzalez J (2000) J Mater Sci 35:3279. doi: CrossRefGoogle Scholar
  30. 30.
    Tursiloadi S, Imai H, Hirashima H (2004) J Non-Cryst Solids 350:271CrossRefGoogle Scholar
  31. 31.
    Ramirez J, Gutierez-Alejandre A (1997) J Catal 170:108CrossRefGoogle Scholar
  32. 32.
    Meiss SA, Rohnke M, Kienle L, Zein El Abedin S, Endres F, Janek J (2007) ChemPhysChem 8:50CrossRefGoogle Scholar
  33. 33.
    Zein El Abedin S, Pölleth M, Meiss SA, Janek J, Endres F (2007) Green Chem 9:549CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hala K. Farag
    • 1
    • 2
  • Mohammad Al Zoubi
    • 1
  • Frank Endres
    • 1
    Email author
  1. 1.Institute of Particle TechnologyClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.Inorganic Chemistry DepartmentNational Research CentreDokki, CairoEgypt

Personalised recommendations