Advertisement

Journal of Materials Science

, Volume 44, Issue 1, pp 186–197 | Cite as

Effect of chromium content on the microstructure and mechanical properties of multipass MMA, low alloy steel weld metal

  • M. H. Avazkonandeh-Gharavol
  • M. Haddad-Sabzevar
  • A. Haerian
Article

Abstract

Effect of chromium content in the range of 0.05–0.91 wt% on the microstructure and mechanical properties of Cr–Ni–Cu low alloy steel weld metal was investigated. All welds were prepared by manual metal arc welding technique in flat position. Microstructure of the welds was examined by optical and scanning electron microscope in both columnar and reheated regions of the weld metal. The results showed increase in acicular ferrite and microphases formed at the expense of primary ferrite and ferrite with second phase with steady refinement of microstructure. According to these microstructural changes, yield and ultimate tensile stresses, Hardness and Charpy V-Notch impact toughness increased, whereas elongation decreased. Increase in Charpy impact value is thought to be due to fine dispersed spheroidized dark microphases at high chromium contents.

Keywords

Ferrite Austenite Weld Metal Impact Toughness Nonmetallic Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to Mr. Kargozar, the deputy, and Mr. E. Abbasi, the research manager of “JVOC” for fabrication of laboratory electrodes and preparing all the samples. Mr. Avazkonandeh also thanks “Nahamin Pardazan Asia Co.” for support in quantitative metallography.

References

  1. 1.
    Bhadeshia HKDH, Svensson LE, Gretoft B (1985) Acta Metall 33:1271CrossRefGoogle Scholar
  2. 2.
    Bhadeshia HKDH, Svensson LE (1993) In: Cerjak H, Easterling KE (eds) Mathematical modeling of weld phenomena. Institute of Materials, LondonGoogle Scholar
  3. 3.
    Kou S (2003) Welding metallurgy. John Wiley & Sons, New JerseyGoogle Scholar
  4. 4.
    Esterling KE (1985) Introduction to physical metallurgy of welding. Butterworths, LondonGoogle Scholar
  5. 5.
    Bhadeshia HKDH, Svensson LE, Gretoft B (1986) J Mater Sci 21:3947. doi: 10.1007/BF02431634 CrossRefGoogle Scholar
  6. 6.
    Honeycombe RWK, Bhadeshia HKDH (2006) Steels. Butterworth-Heinemann Publications, OxfordGoogle Scholar
  7. 7.
    Bhadeshia HKDH (1997) In: Cerjak H, Bhadeshia HKDH (eds) Mathematical modeling of weld phenomena III. Institute of Materials, LondonGoogle Scholar
  8. 8.
    Yang JR, Huang CY, Huang CF et al (1993) J Mater Sci Lett 12:1290CrossRefGoogle Scholar
  9. 9.
    Byun JS, Shim JH, Suh JY et al (2001) Mater Sci Eng A 319–321:326CrossRefGoogle Scholar
  10. 10.
    Ohkita S, Horii Y (1995) ISIJ Int 35:1170CrossRefGoogle Scholar
  11. 11.
    Jorge JCF, Souza LFG, Rebello JMA (2001) Mater Charact 47:195CrossRefGoogle Scholar
  12. 12.
    Jorge JCF, Souza LFG, Rebello JMA et al (2000) IIW doc. II-1398-00Google Scholar
  13. 13.
    Surian ES, De-Vedia LA (1999) Welding J 78:217sGoogle Scholar
  14. 14.
    ANSI/AWS A5.5-96, Specification for low alloy steel electrodes for shielded metal arc welding. American Welding Society, Miami, 1996Google Scholar
  15. 15.
    Bradley JR, Aaronson HI (1981) Metall Trans A 12:1729CrossRefGoogle Scholar
  16. 16.
    Beche A, Zurob HS, Hutchinson CR (2007) Metall Mater Trans A 38:2950CrossRefGoogle Scholar
  17. 17.
    Shiflet GJ, Aaronson HI, Bradley JR (1981) Metall Trans A 12:1743CrossRefGoogle Scholar
  18. 18.
    Babu SS (2004) Curr Opin Solid State Mater Sci 8:267CrossRefGoogle Scholar
  19. 19.
    Farrar RA, Harrison PL (1987) J Mater Sci 22:3812. doi: 10.1007/BF01133327 CrossRefGoogle Scholar
  20. 20.
    Vander Voort GF (1992) Metals handbook, vol 9. ASM Int., OhioGoogle Scholar
  21. 21.
    Harrison PL, Farrar RA (1981) J Mater Sci 16:2218. doi: 10.1007/BF00542384 CrossRefGoogle Scholar
  22. 22.
    Bhadeshia HKDH (2001) Bainite in steels. IOM Comunications Ltd., LondonGoogle Scholar
  23. 23.
    Lee TK, Kim HJ, Kang BY et al (2000) ISIJ Int 40:1260CrossRefGoogle Scholar
  24. 24.
    Court SA, Pollard G (1989) Metallography 22:219CrossRefGoogle Scholar
  25. 25.
    St-Laurent S, L’Esperance G (1992) Mater Sci Eng A 149:203CrossRefGoogle Scholar
  26. 26.
    Tweed JH, Knott JF (1987) Acta Metall 35:1401CrossRefGoogle Scholar
  27. 27.
    Sugden AB, Bhadeshia HKDH (1988) Metall Trans A 19:669CrossRefGoogle Scholar
  28. 28.
    Garrison WM Jr, Wojcieszynski AL (2007) Mater Sci Eng A 464:321CrossRefGoogle Scholar
  29. 29.
    Bose-Filho WW, Carvalho ALM, Strangwood M (2007) Mater Charact 58:29CrossRefGoogle Scholar
  30. 30.
    Shim JH, Oh YJ, Suh JY et al (2001) Acta Mater 49:2115CrossRefGoogle Scholar
  31. 31.
    Dowling JM, Corbett JM, Kerr HW (1986) Metall Trans A 17:1611CrossRefGoogle Scholar
  32. 32.
    Sugden AB, Bhadeshia HKDH (1988) Metall Trans A 19:1597CrossRefGoogle Scholar
  33. 33.
    Powell GLF, Herfurth G (1998) Metall Mater Trans A 29:2775CrossRefGoogle Scholar
  34. 34.
    Ishikawa T, Haze T (1994) Mater Sci Eng A 176:385CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. H. Avazkonandeh-Gharavol
    • 1
  • M. Haddad-Sabzevar
    • 1
  • A. Haerian
    • 2
  1. 1.Department of Materials Science and Metallurgy, Faculty of EngineeringFerdowsi University of MashhadMashhadIran
  2. 2.Sadjad Institute of Higher EducationMashhadIran

Personalised recommendations