Journal of Materials Science

, Volume 44, Issue 1, pp 204–211 | Cite as

Dielectric response features and oxygen migration on rare earth modified lead titanate ferroelectric ceramics

  • A. Peláiz-BarrancoEmail author
  • J. D. S. Guerra
  • F. Calderón-Piñar
  • C. Aragó
  • O. García-Zaldívar
  • R. López-Noda
  • J. A. Gonzalo
  • J. A. Eiras


Rare earth (RE) and manganese-modified lead titanate ceramics were studied concerning the presence of two peaks in the temperature dependence of the dielectric permittivity. An eventual incorporation of the RE into A-site and/or B-site in the perovskite structure and the oxygen migration were considered as causes of the observed phenomenon. The structural analysis showed that at least a small amount of Ti4+ could be substituted by the RE ions. It was considered from the pyroelectric and electrical conductivity results that, even when an eventual incorporation of the RE into the A-site and/or B-site of the structure could be possible, both peaks could not be associated with paraelectric–ferroelectric (PE-FE) phase transitions. The observed peak at lower temperatures has been associated with the PE-FE phase transitions, whereas the hopping of oxygen vacancies has been considered as the cause for the dielectric anomaly observed at higher temperatures.


Rare Earth Oxygen Vacancy Dielectric Permittivity Perovskite Structure Thermal Hysteresis 



The authors wish to thank the Third World Academy of Sciences (RG/PHYS/LA No. 99-050, No. 02-225, No. 05-043) and FAPESP Brazilian agency (Proc. No. 06/60013-5) for financial support, and ICTP for financial support of Latin-American Network of Ferroelectric Materials (NET-43). Dr. Peláiz-Barranco wishes to thank Universidad Autónoma de Madrid for financial support. Dr. Calderón-Piñar wishes to thank the ICTP program for Training and Research in Italian laboratories.


  1. 1.
    Rossetti GA, Cross LE, Cline JP (1999) J Mater Sci 30:24. doi: CrossRefGoogle Scholar
  2. 2.
    Ito Y, Takeuchi H, Nagatsuma N, Jyomura S, Ashida S (1981) J Appl Phys 52:3223CrossRefGoogle Scholar
  3. 3.
    Ichinose N (1985) Am Ceram Soc Bull 64:1581Google Scholar
  4. 4.
    Pérez-Martínez O, Calderón F, Pentón A, Suaste E, Rivera M, Leccabue F, Boccelli G, Watts E (1995) Rev Mex Fis 41:85Google Scholar
  5. 5.
    Pérez-Martínez O, Saniger JM, Peláiz-Barranco A, Calderón-Piñar F (1999) J Mater Res 14:3083CrossRefGoogle Scholar
  6. 6.
    Pérez-Martínez O, Saniger JM, Torres-García E, Flores JO, Calderón-Piñar F, Llópiz JC, Peláiz-Barranco A (1997) J Mat Sci Lett 16:1161Google Scholar
  7. 7.
    Ch Ang, Yu Z, Cross LE (2000) Phys Rev B 62:228CrossRefGoogle Scholar
  8. 8.
    Johnson DW, Cross LE, Hummel FA (1970) J Appl Phys 41:2828CrossRefGoogle Scholar
  9. 9.
    Stumpe R, Wagner D, Bauerle D (1983) Phys Stat Sol A 75:143CrossRefGoogle Scholar
  10. 10.
    Bidault O, Goux P, Kchikech M, Belkaomi M, Maglione M (1994) Phys Rev B 49:7868CrossRefGoogle Scholar
  11. 11.
    Kang BS, Choi SK, Park CH (2003) J Appl Phys 94:1904CrossRefGoogle Scholar
  12. 12.
    Peláiz-Barranco A, Guerra JDS, López-Noda R, Araújo EB (2008) J Phys D Appl Phys 41:215503CrossRefGoogle Scholar
  13. 13.
    Takeuchi H, Jhomura S, Nakaya P, Ishikawa Y (1983) Jpn J Appl Phys 22:166CrossRefGoogle Scholar
  14. 14.
    Takeuchi H, Jhomura S, Nakaya P (1985) Jpn J Appl Phys 24:36CrossRefGoogle Scholar
  15. 15.
    Tura V, Mitoseriu L, Papusoi C, Osaka T, Okuyama M (1998) J Electroceram 2:163CrossRefGoogle Scholar
  16. 16.
    Kinoshita K, Yamaji A (1976) J Appl Phys 47:371CrossRefGoogle Scholar
  17. 17.
    Frey MH, Payne DA (1996) Phys Rev B 54:3158CrossRefGoogle Scholar
  18. 18.
    Arlt G (1990) J Mater Sci 25:2655. doi: CrossRefGoogle Scholar
  19. 19.
    Zhong WL, Wang YG, Zhang PL (1994) Phys Lett A 189:121CrossRefGoogle Scholar
  20. 20.
    Lines ME, Glass AM (1977) Principles and applications of ferroelectrics and related materials. Clarendon Press, OxfordGoogle Scholar
  21. 21.
    Strukov BA, Levanyuk AP (1998) Ferroelectric phenomena in crystal. Springer-Verlag, BerlinCrossRefGoogle Scholar
  22. 22.
    Xu Y (1991) Ferroelectric materials and their applications. Elsevier Science Publishers, NetherlandsGoogle Scholar
  23. 23.
    Cotton FA, Wilkinson G, Wilkinson CA, Bochmann M (1999) Advanced inorganic chemistry. Wiley, New YorkGoogle Scholar
  24. 24.
    Halliyal A (1987) Am Ceram Soc Bull 66:671Google Scholar
  25. 25.
    Ramírez-Rosales D, Zamorano-Ulloa R, Pérez-Martínez O (2001) Solid State Comm 118:371CrossRefGoogle Scholar
  26. 26.
    Saiful-Islam M (2000) J Mater Chem 10:1027CrossRefGoogle Scholar
  27. 27.
    Jiménez B, Vicente JM (1998) J Phys D Appl Phys 31:446CrossRefGoogle Scholar
  28. 28.
    Lang SB (1974) Ferroelectrics 7:231CrossRefGoogle Scholar
  29. 29.
    Berlincourt D (1956) IRE Trans Ultrason Eng 4:53CrossRefGoogle Scholar
  30. 30.
    Jaffe H (1958) J Am Ceram Soc 41:494CrossRefGoogle Scholar
  31. 31.
    Berlincourt D, Crolik C, Jaffe H (1960) Proc IRE 48:220CrossRefGoogle Scholar
  32. 32.
    Blood HL, Levine S, Roberts NH (1956) J Appl Phys 27:660CrossRefGoogle Scholar
  33. 33.
    Northrip JW (1960) J Appl Phys 31:2293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. Peláiz-Barranco
    • 1
    Email author
  • J. D. S. Guerra
    • 2
  • F. Calderón-Piñar
    • 1
  • C. Aragó
    • 3
  • O. García-Zaldívar
    • 1
  • R. López-Noda
    • 4
  • J. A. Gonzalo
    • 3
  • J. A. Eiras
    • 5
  1. 1.Facultad de Física-Instituto de Ciencia y Tecnología de MaterialesUniversidad de La Habana. San Lázaro y L La HabanaCuba
  2. 2.Departamento de Física e QuímicaUniversidade Estadual PaulistaIlha SolteiraBrazil
  3. 3.Departamento de Física de Materiales, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain
  4. 4.Departamento de Física AplicadaICIMAFLa HabanaCuba
  5. 5.Departamento de FísicaUniversidade Federal de São CarlosSao CarlosBrazil

Personalised recommendations