Advertisement

Journal of Materials Science

, Volume 44, Issue 1, pp 212–220 | Cite as

Cyclic hardening behavior for interstitial-free steel

  • Chia-Chang Shih
  • New-Jin Ho
  • Hsing-Lu HuangEmail author
Article

Abstract

Strain-controlled fatigue experiments were employed to evaluate automotive-grade interstitial-free ferrite steels under R = 0. Hundreds of grains were examined by scanning electron microscope (SEM) under electron channeling contrast image technique of backscattered electron image mode (BEI/ECCI) for comprehensive comparison of micrographs with those taken under transmission electron microscope (TEM). It is clearly revealed that cyclic hardening was virtually unobvious and dislocation cell structures were very rare when Δε/2 was controlled to within 0.1%. When Δε/2 was increased to 0.2%, the general dislocation structure exhibited a predominately dislocation wall structure prior to the secondary cyclic hardening, after which the formation of dislocation cells were observed. At Δε/2 = 1.0%, following an initial rapid-hardening stage, the dislocation cell structure of low-angle misorientation formed in the early stage was gradually converted into high-angle misorientation as the cyclic strain continued to be imposed.

Keywords

Strain Amplitude Fatigue Failure Cyclic Deformation Dislocation Cell Cyclic Hardening 

Notes

Acknowledgements

This research was supported by the National Science Council, Taiwan, ROC under contract NSC94-2216-E-110-008, and partly by the Center for Nanoscience and Nanotechnology at National Sun Yat-Sen University.

References

  1. 1.
    Luoh T, Chang CP (1998) Mater Sci Eng A256:18CrossRefGoogle Scholar
  2. 2.
    Toribio J, Kharin V (2006) J Mater Sci 41:6015. doi: https://doi.org/10.1007/s10853-006-0364-5 CrossRefGoogle Scholar
  3. 3.
    Kuokkala VT, Kettunen P (1985) Acta Metall 33:2041CrossRefGoogle Scholar
  4. 4.
    Polák J, Obrtlík K, Hájek M, Vašek A (1992) Mater Sci Eng A151:19CrossRefGoogle Scholar
  5. 5.
    Magnin T, Ramade C, Lepinoux J, Kubin LP (1989) Mater Sci Eng A118:41CrossRefGoogle Scholar
  6. 6.
    Wang R, Mugrhabi H (1984) Mater Sci Eng 63:147CrossRefGoogle Scholar
  7. 7.
    Gerland M, Violan P (1986) Mater Sci Eng 84:23CrossRefGoogle Scholar
  8. 8.
    Chen CY, Huang JY, Yeh JJ (2003) J Mater Sci 38:817. doi: https://doi.org/10.1023/A:1021817216519 CrossRefGoogle Scholar
  9. 9.
    Wang R, Mugrhabi H, McGovern S, Rapp M (1984) Mater Sci Eng 65:219CrossRefGoogle Scholar
  10. 10.
    Figueroa JC, Bhat SP, Delaveaux R, Murzenski S, Laird C (1981) Acta Metall 29:1667CrossRefGoogle Scholar
  11. 11.
    Fujii T, Shintate H, Yaguchi H, Mitani H, Inada A, Shinkai K, Kumai S, Kato M (1997) ISIJ Int 37:1230CrossRefGoogle Scholar
  12. 12.
    Videm M, Ryum N (1996) Mater Sci Eng A219:1CrossRefGoogle Scholar
  13. 13.
    Videm M, Ryum N (1996) Mater Sci Eng A219:11CrossRefGoogle Scholar
  14. 14.
    Lin TL, Wu JS, Chen XF (1987) Mater Sci Eng 86:19CrossRefGoogle Scholar
  15. 15.
    Planell JA, Guiu F (1986) Philos Mag A54:325CrossRefGoogle Scholar
  16. 16.
    Mori H, Tokuwame M, Miyazaki T (1979) Philos Mag A40:409CrossRefGoogle Scholar
  17. 17.
    Mori H, Oba N, Miyazaki T, Kozakai T (1980) Philos Mag A42:483CrossRefGoogle Scholar
  18. 18.
    Šesták B, Novák V, Libovický S (1988) Philos Mag A57:353CrossRefGoogle Scholar
  19. 19.
    Mughrabi H, Herz K, Stark X (1981) Int J Fract 17:193CrossRefGoogle Scholar
  20. 20.
    Mughrabi H, Herz K, Stark X (1976) Acta Metall 24:659CrossRefGoogle Scholar
  21. 21.
    Sommer C, Mughrabi H, Lochner D (1998) Acta Metall 46:1527Google Scholar
  22. 22.
    Abdel-Raouf H, Plumtree A (1971) Metall Trans 2:1863CrossRefGoogle Scholar
  23. 23.
    Chopra OK, Gowda CVB (1974) Philos Mag 30:583CrossRefGoogle Scholar
  24. 24.
    Ikeda S (1981) Trans Jpn Inst Met 22:267CrossRefGoogle Scholar
  25. 25.
    Kuhlmann-Wilsdorf D, van der Merwe JH (1982) Mater Sci Eng 55:79CrossRefGoogle Scholar
  26. 26.
    Kuhlmann-Wilsdorf D (1987) Mater Sci Eng 86:53CrossRefGoogle Scholar
  27. 27.
    Li XW, Zhou Y (2007) J Mater Sci 42:4716. doi: https://doi.org/10.1007/s10853-007-1758-8 CrossRefGoogle Scholar
  28. 28.
    Ahmed J, Wilkinson AJ, Roberts SG (2001) Philos Mag A81:1473CrossRefGoogle Scholar
  29. 29.
    Ahmed J, Wilkinson AJ, Roberts SG (1997) Philos Mag Lett 76:237CrossRefGoogle Scholar
  30. 30.
    Li SX, Li MY, Zhu R, Chao YS (2004) Philos Mag 84:3323CrossRefGoogle Scholar
  31. 31.
    Huang HL, Ho NJ (2003) Mater Sci Eng A345:215CrossRefGoogle Scholar
  32. 32.
    Huang HL, Ho NJ (2000) Mater Sci Eng A279:254CrossRefGoogle Scholar
  33. 33.
    Kaneko Y, Ishikawa M, Hashimoto S (2005) Mater Sci Eng A400–401:418CrossRefGoogle Scholar
  34. 34.
    Awatani J, Katagiri K, Nakai H (1978) Metall Trans 9A:111CrossRefGoogle Scholar
  35. 35.
    Ogura T, Masumoto T (1976) Trans Jpn Inst Met 17:733CrossRefGoogle Scholar
  36. 36.
    Awatani J, Katagiri K, Shiraishi T (1976) Metal Trans 7A:807CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Materials Science and EngineeringNational Sun Yat-Sen UniversityKaohsiungTaiwan, ROC
  2. 2.Department of Mechanical EngineeringChinese Military AcademyKaohsiungTaiwan, ROC

Personalised recommendations