Advertisement

Journal of Materials Science

, Volume 44, Issue 1, pp 234–243 | Cite as

Relationship between effective ionic radii, structure and electro-mechanical properties of zirconia stabilized with rare earth oxides M2O3 (M = Yb, Y, Sm)

  • M. HartmanováEmail author
  • E. E. Lomonova
  • F. Kubel
  • J. Schneider
  • V. Buršíková
  • M. Jergel
  • V. Navrátil
  • F. Kundracik
Article

Abstract

Zirconia stabilized with various concentrations of rare earth oxides of Yb, Sm and Y with different effective ionic radii ratio between the dopant and host cations was studied. In particular, structure, phase composition, compositional range for existence of cubic solid solutions and their phase transformations, stabilization degree of high-temperature phases and the crystal chemistry and type of solid solutions were investigated. These findings were related to the measured material characteristics, namely the electrical conductivity, microhardness and effective elastic modulus, to elucidate various effects important for practical applications, such as an increase of electrical conductivity due to the pyrochlore phase occurrence or an increase of microhardness arising from the effect of dynamic strain ageing.

Keywords

Rare Earth Oxide Dynamic Strain Ageing Yb2O3 Pyrochlore Phase Effective Elastic Modulus 

Notes

Acknowledgements

The work was partially supported by the research grants No. 2/7119/27 and 2/0047/08 of the Slovak Grant Agency (VEGA), No. 106/05/0274 of the Grant Agency of Czech Republic (GACR).

References

  1. 1.
    Yamamura H, Nishino H, Kakimura K, Nomura K (2003) Solid State Ionics 158:359CrossRefGoogle Scholar
  2. 2.
    Taylor MA, Argirusis Chr, Kilo M, Borchardt G, Luther K-D, Assmus W (2004) Solid State Ionics 173:51CrossRefGoogle Scholar
  3. 3.
    Kimpton J, Randle TH, Drennan J (2002) Solid State Ionics 149:89CrossRefGoogle Scholar
  4. 4.
    Sameshima S, Ono H, Higashi K, Sonoda K, Hirata Y, Ikuma Y (2000) J Ceram Soc Jpn 108:1060 and references hereinGoogle Scholar
  5. 5.
    Strickler DW, Carlsson WG (1965) J Am Ceram Soc 48:286CrossRefGoogle Scholar
  6. 6.
    Stattford RJ, Rothman SJ, Routbort JL (1989) Solid State Ionics 37:67CrossRefGoogle Scholar
  7. 7.
    Gerhardt-Anderson R, Nowick AS (1981) Solid State Ionics 5:547CrossRefGoogle Scholar
  8. 8.
    Kim DJ (1989) J Am Ceram Soc 72:1415CrossRefGoogle Scholar
  9. 9.
    Badwal SPS, Ciacchi FT (2000) Ionics 6:1CrossRefGoogle Scholar
  10. 10.
    Osiko VV, Lomonova EE, Borik MA (1987) Ann Rev Mater Sci 17:101CrossRefGoogle Scholar
  11. 11.
    Hartmanová M, Kubel F, Buršíková V, Navrátil V, Navrátil K, Lomonova EE, Holgado JP, Kundracik F (2008) J Phys Chem Solids 69:805CrossRefGoogle Scholar
  12. 12.
    Hartmanová M, Schneider J, Navrátil V, Kundracik F, Schulz H, Lomonova EE (2000) Solid State Ionics 136–137:107CrossRefGoogle Scholar
  13. 13.
    Hartmanová M, Kubel F, Buršiková V, Jergel M, Navrátil V, Lomonova EE, Navrátil K, Kundracik F, Kostič I (2007) Russ J Electrochem 43:381CrossRefGoogle Scholar
  14. 14.
    Perez-y-Jorba M (1962) Ann Chim (Paris) 7:479Google Scholar
  15. 15.
    Collonques R (1963) Ann Chim (Paris) 8:395Google Scholar
  16. 16.
    Ray SP, Stubican VS (1977) Mater Res Bull 12:549CrossRefGoogle Scholar
  17. 17.
    Stubican VS, Hink RC, Ray SP (1978) J Am Ceram Soc 61:18CrossRefGoogle Scholar
  18. 18.
    Kuzminov YuS, Lomonova EE, Osiko VV (2004) In: Refractory materials synthetized in cold container. Publishing House NAUKA, Moscow, p 369Google Scholar
  19. 19.
    Aleksandrov VI, Batyugov S Kh, Vishnyakova MA, Voronko Yu K, Kalabukhova VF, Lomonova EE, Osiko VV (1987) Neorg Materiallyi 23:349 (in Russian)Google Scholar
  20. 20.
    Roemer H, Luther K-D, Assmus W (1993) J Cryst Growth 130:233CrossRefGoogle Scholar
  21. 21.
    Roemer H, Luther K-D, Assmus W (1994) J Cryst Growth 141:159CrossRefGoogle Scholar
  22. 22.
    Roemer H, Luther K-D, Assmus W (1994) Z f Kristallogr 209:314Google Scholar
  23. 23.
    Alisin VV, Borik MA, Lomonova EE, Melshanov AF, Moskvitin GV, Osiko VV, Panov VA, Pavlov VG, Vishnyakova MA (2005) Mater Sci Eng C 25:577CrossRefGoogle Scholar
  24. 24.
    Glushkova VB, Hanic F, Sazonova LV (1978) Ceramurgia Int 4:176CrossRefGoogle Scholar
  25. 25.
    Hanic F, Hartmanová M, Krcho S (1988) Solid State Ionics 31:167CrossRefGoogle Scholar
  26. 26.
    Hartmanová M, Hanic F, Putyera K, Tunega D, Glushkova VB (1993) Mater Chem Phys 34:175CrossRefGoogle Scholar
  27. 27.
    Shannon RD (1976) Acta Crystallogr A 32:751CrossRefGoogle Scholar
  28. 28.
    Van Dijk MP, De Vries KJ, Burggraaf AJ (1983) Solid State Ionics 9&10:913Google Scholar
  29. 29.
    Hong SJ, Virkar AV (1995) J Am Ceram Soc 78:433CrossRefGoogle Scholar
  30. 30.
    Yamamoto O, Arati Y, Takeda Y, Imanishi N, Mizutani Y, Kawai M, Nakamura Y (1995) Solid State Ionics 79:137CrossRefGoogle Scholar
  31. 31.
    Pruneda JM, Artacho E (2005) Phys Rev B 72:085107CrossRefGoogle Scholar
  32. 32.
    Mandal BP, Garg N, Sharma SM, Tyagi AK (2006) J Solid State Chem 179:1990CrossRefGoogle Scholar
  33. 33.
    Mandal BP, Banerji A, Sathe V, Deb SK, Tyagi AK (2007) J Solid State Chem 180:2643CrossRefGoogle Scholar
  34. 34.
    Mandal BP, Deshpande SK, Tyagi AK (2008) J Mater Res 23:911CrossRefGoogle Scholar
  35. 35.
    Garg N, Pandey KK, Murli Ch, Shanavas KV, Mandal BP, Tyagi AK, Sharma SM (2008) Phys Rev B 77:214105CrossRefGoogle Scholar
  36. 36.
    Bevan DJ, Summerville E (1979) In: Gschneider KA Jr, Erying L (eds) Handbook on the physics and chemistry of rare-earths, vol 3. North-Holland, Amsterdam, p 496Google Scholar
  37. 37.
    Kharton VV, Marques FMB, Atkinson A (2004) Solid State Ionics 174:135CrossRefGoogle Scholar
  38. 38.
    Tuller HL, Moon PK (1988) Mater Sci Eng B 1:171CrossRefGoogle Scholar
  39. 39.
    Minervini L, Grimes RW, Sickafus KE (2000) J Am Ceram Soc 83:1873CrossRefGoogle Scholar
  40. 40.
    Van Bueren HG (1960) In: Imperfections in crystals. North-Holland Publishing Company, Amsterdam, p 208Google Scholar
  41. 41.
    Caillard D, Martin JL (2003) In: Thermally activated mechanisms in crystal plasticity. Pergamon, Elsevier, Oxford, p 65CrossRefGoogle Scholar
  42. 42.
    Haasen P (1968) Trans Jpn Inst Metals 8(Suppl):40Google Scholar
  43. 43.
    Fleischer RL (1964) In: Strengthening of metals. Einhold Publ., New YorkGoogle Scholar
  44. 44.
    Tabor D (2000) In: The hardness of metals. Clarendon Press, Oxford Google Scholar
  45. 45.
    Wang Y, Duncan K, Wachsman ED, Ebrahimi F (2007) Solid State Ionics 178:53CrossRefGoogle Scholar
  46. 46.
    Duncan K, Wang Y, Bishop S, Ebrahimi F, Wachsman ED (2006) J Am Ceram Soc 89:3162CrossRefGoogle Scholar
  47. 47.
    Yamamoto O (2000) Electrochim Acta 45:2423CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Hartmanová
    • 1
    Email author
  • E. E. Lomonova
    • 2
  • F. Kubel
    • 3
  • J. Schneider
    • 4
  • V. Buršíková
    • 5
  • M. Jergel
    • 1
  • V. Navrátil
    • 6
  • F. Kundracik
    • 7
  1. 1.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Institute for Chemical Technologies and AnalyticsVienna University of TechnologyViennaAustria
  4. 4.Institute of Crystallography and MineralogyLudwig-Maximilians UniversityMunichGermany
  5. 5.Department of Physical Electronics, Faculty of SciencesMasaryk UniversityBrnoCzech Republic
  6. 6.Department of Physics, Faculty of EducationMasaryk UniversityBrnoCzech Republic
  7. 7.Department of Experimental Physics, Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovakia

Personalised recommendations