Microscopy and microanalysis of inorganic polymer cements. 1: remnant fly ash particles
- 954 Downloads
- 81 Citations
Abstract
Accurate and precise electron microscopic analysis of the remnant solid precursor (fly ash and blast furnace slag) particles embedded in an inorganic polymer cement (or “fly ash geopolymer”) provides critical information regarding the process of gel binder formation. Differential solubility of phases in the fly ash is seen to be important, with insoluble mullite crystals becoming exposed by the retreat of the surrounding glassy phases. High-iron particles appear to remain largely unreacted, and the use of sectioned and polished specimens provides a view of the inside of these particles, which can show a wide variety of phase separation morphologies and degrees of intermixing of high iron and other phases. Calcium appears to be active in the process of alkali activation of ash/slag blends, although the competitive and/or synergistic effects of ash and slag particles during the reaction process remain to be understood in detail.
Keywords
Blast Furnace Slag Calcium Silicate Hydrate Aluminosilicate Glass Incident Electron Energy Alkali ActivationNotes
Acknowledgements
Partial financial support for this work was provided by the Australian Research Council (ARC), through Discovery Project grants awarded to J.S.J. van Deventer and through the Particulate Fluids Processing Centre, a Special Research Centre of the ARC.
References
- 1.Taylor M, Tam C, Gielen D (2006) Energy efficiency and CO2 emissions from the global cement industry. International Energy Agency, ParisGoogle Scholar
- 2.Duxson P, Provis JL, Lukey GC, van Deventer JSJ (2007) Cem Concr Res 37:1590CrossRefGoogle Scholar
- 3.Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) J Mater Sci 42:2917. doi: https://doi.org/10.1007/s10853-006-0637-z CrossRefGoogle Scholar
- 4.Lloyd RR (2008) Ph.D. thesis, University of Melbourne, AustraliaGoogle Scholar
- 5.Palomo A, Banfill PFG, Fernandéz-Jiménez A, Swift DS (2005) Adv Cem Res 17:143CrossRefGoogle Scholar
- 6.Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62:2309CrossRefGoogle Scholar
- 7.Provis JL, van Deventer JSJ (2007) Chem Eng Sci 62:2318CrossRefGoogle Scholar
- 8.Rees CA, Provis JL, Lukey GC, van Deventer JSJ (2007) Langmuir 23:9076CrossRefGoogle Scholar
- 9.Criado M, Fernández-Jiménez A, de la Torre AG, Aranda MAG, Palomo A (2007) Cem Concr Res 37:671CrossRefGoogle Scholar
- 10.Criado M, Fernández-Jiménez A, Palomo A, Sobrados I, Sanz J (2008) Micropor Mesopor Mater 109:525CrossRefGoogle Scholar
- 11.Rahier H, Wastiels J, Biesemans M, Willem R, van Assche G, van Mele B (2007) J Mater Sci 42:2982. doi: https://doi.org/10.1007/s10853-006-0568-8 CrossRefGoogle Scholar
- 12.De Silva P, Sagoe-Crentsil K, Sirivivatnanon V (2007) Cem Concr Res 37:512CrossRefGoogle Scholar
- 13.Fernández-Jiménez A, Palomo A, Criado M (2005) Cem Concr Res 35:1204CrossRefGoogle Scholar
- 14.Gieré R, Carleton LE, Lumpkin GR (2003) Am Miner 88:1853CrossRefGoogle Scholar
- 15.Vassileva SV, Menendez R, Alvarez D, Diaz-Somoano M, Martinez-Tarazona MR (2003) Fuel 82:1793CrossRefGoogle Scholar
- 16.Hemmings RT, Berry EE (1988) In: McCarthy GJ, Glasser FP, Roy DM, Hemmings RT (eds) Materials research society symposium proceedings, vol 113. Materials Research Society, Pittsburgh, pp 3–38Google Scholar
- 17.Lee WKW, van Deventer JSJ (2002) Colloids Surf A 211:49CrossRefGoogle Scholar
- 18.Keyte LM (2008) Ph.D. thesis, University of Melbourne, AustraliaGoogle Scholar
- 19.Keyte LM, Lukey GC, van Deventer JSJ (2005) In: Nizhou A (ed) Proceedings of WasteEng 2005, Albi, France, 2005. CD-ROM proceedingsGoogle Scholar
- 20.van Deventer JSJ, Provis JL, Duxson P, Lukey GC (2007) J Hazard Mater A139:506CrossRefGoogle Scholar
- 21.Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Colloids Surf A 269:47CrossRefGoogle Scholar
- 22.Duxson P, Provis JL, Lukey GC, Separovic F, van Deventer JSJ (2005) Langmuir 21:3028CrossRefGoogle Scholar
- 23.Provis JL, Duxson P, Lukey GC, van Deventer JSJ (2005) Chem Mater 17:2976CrossRefGoogle Scholar
- 24.Wei S, Zhang Y-S, Wei L, Liu Z-Y (2004) Cem Concr Res 34:935CrossRefGoogle Scholar
- 25.Zhang Y, Sun W, Jin Z, Yu H, Jia Y (2007) Mater Lett 61:1552CrossRefGoogle Scholar
- 26.Davidovits J, Sawyer JL (1985) US Patent 4,509,985, US Patent OfficeGoogle Scholar
- 27.Li Z, Liu S (2007) J Mater Civil Eng 19:470CrossRefGoogle Scholar
- 28.Yip CK, van Deventer JSJ (2003) J Mater Sci 38:3851. doi: https://doi.org/10.1023/A:1025904905176 CrossRefGoogle Scholar
- 29.Allahverdi A, Škvára F (2001) Ceram-Silik 45:81Google Scholar
- 30.Buchwald A, Hilbig H, Kaps C (2007) J Mater Sci 42:3024. doi: https://doi.org/10.1007/s10853-006-0525-6 CrossRefGoogle Scholar
- 31.Lecomte I, Henrist C, Liégeois M, Maseri F, Rulmont A, Cloots R (2006) J Eur Ceram Soc 26:3789CrossRefGoogle Scholar
- 32.Bejaoui S, Bary B (2007) Cem Concr Res 37:469CrossRefGoogle Scholar
- 33.Lloyd RR, Provis JL, van Deventer JSJ (2008) J Mater Sci, in press (Part 2 of this series). doi: https://doi.org/10.1007/s10853-008-3078-z CrossRefGoogle Scholar
- 34.Fernández-Jiménez A, de la Torre AG, Palomo A, Lopez-Olmo G, Alonso MM, Aranda MAG (2006) Fuel 85:1960CrossRefGoogle Scholar
- 35.Kjellsen KO, Monsøy A, Isachsen K, Detwiler RJ (2003) Cem Concr Res 33:611CrossRefGoogle Scholar
- 36.Goodhew P, Humphreys J, Beanland R (2001) Electron microscopy and analysis, 3rd edn. Taylor and Francis, LondonGoogle Scholar
- 37.Egerton RF (2005) Physical principles of electron microscopy. Springer, New YorkCrossRefGoogle Scholar
- 38.Scrivener KL (2004) Cem Concr Compos 26:935CrossRefGoogle Scholar
- 39.Drouin D, Couture AR, Joly D, Tastet X, Aimez V, Gauvin R (2007) Scanning 29:92CrossRefGoogle Scholar
- 40.Joy DC (1998) J Microsc 191:74CrossRefGoogle Scholar
- 41.Williams DB, Carter CB (1996) Transmission electron microscopy: a text book for materials science. Plenum Press, New YorkCrossRefGoogle Scholar
- 42.Aramaki S, Roy R (1962) J Am Ceram Soc 45:229CrossRefGoogle Scholar
- 43.MacDowell JF, Beall GH (1969) J Am Ceram Soc 52:17CrossRefGoogle Scholar
- 44.Gomes S, François M (2000) Cem Concr Res 30:175CrossRefGoogle Scholar
- 45.Patil MD, Eaton HC, Tittlebaum ME (1984) Fuel 63:788CrossRefGoogle Scholar
- 46.Fernández-Jiménez A, Lachowski EE, Palomo A, Macphee DE (2004) Cem Concr Compos 26:1001CrossRefGoogle Scholar
- 47.Xu H, Lukey GC, van Deventer JSJ (2004) In: Malhotra VM (ed) Proceedings of 8th CANMET/ACI international conference on fly ash, silica fume, slag and natural pozzolans in concrete. American Concrete Institute, Las Vegas, pp 797–820Google Scholar
- 48.Kutchko BG, Kim AG (2006) Fuel 85:2537CrossRefGoogle Scholar
- 49.Bayukov OA, Anshits NN, Balaev AD, Sharonova OM, Rabchevskii EV, Petrov MI, Anshits AG (2005) Inorg Mater 41:50CrossRefGoogle Scholar
- 50.Warren CJ, Dudas MJ (1989) Sci Total Environ 84:223CrossRefGoogle Scholar
- 51.Hinckley CC, Smith GV, Twardowska H, Saporoschenko M, Shiley RH, Griffen RA (1980) Fuel 59:161CrossRefGoogle Scholar
- 52.Vereshchagina TA, Anshits NN, Maksimov NG, Vereshchagin SN, Bayukov OA, Anshits AG (2004) Glass Phys Chem 30:247CrossRefGoogle Scholar
- 53.Perera DS, Cashion JD, Blackford MG, Zhang Z, Vance ER (2007) J Eur Ceram Soc 27:2697CrossRefGoogle Scholar
- 54.Swaddle TW (2001) Coord Chem Rev 219–221:665CrossRefGoogle Scholar
- 55.Wang S-D, Scrivener KL (1995) Cem Concr Res 25:561CrossRefGoogle Scholar
- 56.Brough AR, Atkinson A (2002) Cem Concr Res 32:865CrossRefGoogle Scholar
- 57.Fredericci C, Zanotto ED, Ziemath EC (2000) J Non-Cryst Solids 273:64CrossRefGoogle Scholar
- 58.Tsuyuki N, Koizumi K (1999) J Am Ceram Soc 82:2188CrossRefGoogle Scholar
- 59.Brew DRM, Glasser FP (2005) Cem Concr Res 35:85CrossRefGoogle Scholar