Journal of Materials Science

, Volume 44, Issue 6, pp 1520–1527 | Cite as

Thermoanalytical characterization of epoxy matrix-glass microballoon syntactic foams

  • Tien Chih Lin
  • Nikhil GuptaEmail author
  • Anton Talalayev
Syntactic and Composite Foams


Syntactic foams are finding new applications where their thermal stability and high temperature response are important. Therefore, the high temperature response of these advanced composites needs to be characterized and correlated with various material parameters. The present study is aimed at evaluating the effect of microballoon (hollow particle) volume fraction (Φ) and wall thickness (w) on thermoanalytical characteristics of epoxy matrix syntactic foams containing glass microballoons. These composites are characterized to determine the glass transition temperature (Tg), the weight loss, and the char yield. It is observed that Tg decreases and the char yield increases due to the presence of microballoons in the resin. The Tg is increased with an increase in Φ but is not significantly affected by w. The thermal stability is increased by increasing w and is relatively less sensitive to Φ. Understanding the relations between thermal properties of syntactic foams, the microballoon wall thickness, and microballoon volume fraction will help in developing syntactic foams optimized for mechanical as well as thermal characteristics. Due to the increased interest in functionally graded syntactic foams containing a gradient in microballoon volume fraction or wall thickness, the results of the present study are helpful in better tailoring these materials for given applications.


Differential Scanning Calorimetry Wall Thickness Glass Transition Temperature Char Yield Matrix Resin 



The research work is supported by the National Science Foundation grant CMMI-0726723. The authors wish to express gratitude to the 3M Corporation for supplying microballoons and technical information related to them. Authors thank Momchil Dimchev for help in specimen fabrication. Support of Othmer Institute of Interdisciplinary Studies to the undergraduate students is acknowledged.


  1. 1.
    Bunn P, Mottram JT (1993) Composites 24:565CrossRefGoogle Scholar
  2. 2.
    Kim HS, Oh HH (2000) J Appl Polym Sci 76:1324CrossRefGoogle Scholar
  3. 3.
    Sauvant-Moynot V, Gimenez N, Sautereau H (2006) J Mater Sci 41:4047. doi: CrossRefGoogle Scholar
  4. 4.
    Watkins L, Hershey E (2001) Oil Gas J 99:49Google Scholar
  5. 5.
    Earl JS, Shenoi RA (2004) J Compos Mater 38(15):1345. doi: CrossRefGoogle Scholar
  6. 6.
    Ouissaden L, Lekhder A, Dumontet H, Benhamida A, Bensalah MO (2008) Adv Theor Appl Mech 1(3):155 Google Scholar
  7. 7.
    Seamark MJ (1991) Cell Polym 10:308Google Scholar
  8. 8.
    Watkins L (1988) In: Chung JS, Sparks Ch P, Brekke NN, Clukey EC, Penney TR (eds) Proceedings of the international offshore mechanics and arctic engineering symposium, ASME, 1988, p 403Google Scholar
  9. 9.
    Gupta N, Woldesenbet E (2003) Compos Struct 61:311CrossRefGoogle Scholar
  10. 10.
    Gibson LJ, Ashby MF (1988) Cellular solids. Pergamon Press, New YorkGoogle Scholar
  11. 11.
    Gladysz GM, Perry B, McEachen G, Lula J (2006) J Mater Sci 41:4085. doi: CrossRefGoogle Scholar
  12. 12.
    John B, Nair C, Devi K, Ninan K (2007) J Mater Sci 42:5398. doi: CrossRefGoogle Scholar
  13. 13.
    Kishore, Shankar R, Sankaran S (2005) J Appl Polym Sci 98:673CrossRefGoogle Scholar
  14. 14.
    Rohatgi PK, Kim JK, Gupta N, Alaraj S, Daoud A (2006) Compos A Appl Sci Manuf 37:430CrossRefGoogle Scholar
  15. 15.
    Song B, Chen W, Frew DJ (2004) J Compos Mater 38:915CrossRefGoogle Scholar
  16. 16.
    Wouterson EM, Boey FYC, Hu X, Wong SC (2005) Compos Sci Technol 65:1840CrossRefGoogle Scholar
  17. 17.
    L’Hostis G, Devries F (1998) Compos B Eng 29:351CrossRefGoogle Scholar
  18. 18.
    Sankaran S, Sekhar K, Raju G, Kumar M (2006) J Mater Sci 41:4041. doi: CrossRefGoogle Scholar
  19. 19.
    Shabde V, Hoo K, Gladysz G (2006) J Mater Sci 41:4061. doi: CrossRefGoogle Scholar
  20. 20.
    Felske JD (2004) Int J Heat Mass Transf 47:3453CrossRefGoogle Scholar
  21. 21.
    Rohatgi PK, Gupta N, Alaraj S (2006) J Compos Mater 40:1163CrossRefGoogle Scholar
  22. 22.
    Wouterson EM, Boey FYC, Hu X, Wong S-C (2007) Polymer 48:3183CrossRefGoogle Scholar
  23. 23.
    Kang S, Hong SI, Choe CR, Park M, Rim S, Kim J (2001) Polymer 42:879CrossRefGoogle Scholar
  24. 24.
    Hancox NL (1998) Mater Des 19:85CrossRefGoogle Scholar
  25. 25.
    Gupta N (2007) Mater Lett 61:979CrossRefGoogle Scholar
  26. 26.
    Gupta N, Ricci W (2006) Mater Sci Eng A 427:331CrossRefGoogle Scholar
  27. 27.
    Kishore, Shankar R, Sankaran S (2005) Mater Sci Eng A 412:153CrossRefGoogle Scholar
  28. 28.
    El-Hadek MA, Tippur HV (2003) Int J Solids Struct 40:1885CrossRefGoogle Scholar
  29. 29.
    Gupta N, Nagorny R (2006) J Appl Polym Sci 102:1254CrossRefGoogle Scholar
  30. 30.
    Wingard CD (2000) Thermochim Acta 357–358:293CrossRefGoogle Scholar
  31. 31.
    Ehrenstein GW, Riedel G, Trawiel P (2004) Thermal analysis of plastics: theory and practice. Carl Hanser Verlag, MunichCrossRefGoogle Scholar
  32. 32.
    C271-99 (1999) Standard test method for density of sandwich core materials. ASTM International, West Conshohocken, PA, USAGoogle Scholar
  33. 33.
    Yasmin A, Luo JJ, Abot JL, Daniel IM (2006) Compos Sci Technol 66:2415CrossRefGoogle Scholar
  34. 34.
    Gupta N, Woldesenbet E (2004) J Cell Plast 40:461CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Tien Chih Lin
    • 1
  • Nikhil Gupta
    • 1
    • 2
    Email author
  • Anton Talalayev
    • 1
  1. 1.Composite Materials and Mechanics Laboratory, Mechanical and Aerospace Engineering DepartmentPolytechnic Institute of New York UniversityBrooklynUSA
  2. 2.Thermal Analysis Laboratory, Polymer Research InstitutePolytechnic Institute of New York UniversityBrooklynUSA

Personalised recommendations