Journal of Materials Science

, Volume 44, Issue 2, pp 591–600 | Cite as

Precipitation of complex carbonitrides in a Nb–Ti microalloyed plate steel

  • H. R. WangEmail author
  • W. Wang


Complex carbonitrides precipitated in base metal and heat-affected zone (HAZ) in Nb–Ti hot-rolled microalloyed steel plates have been identified to be Ti-rich (Nb, Ti)(C, N). As the reheating temperature is decreased from 1,200 to 1,150 °C, the average particle size in base metal is decreased from 40 to 20 nm. The morphology of complex carbonitrides in the HAZ, however, is transformed from cuboidal to rectangle shape with length of over 500 nm. Reheating at low temperature 1,150 °C may improve the toughness of HAZ by reducing the austenite size at large heat input welding.


Austenite Base Metal Impact Toughness Prior Austenite Particle Volume Fraction 



The authors would like to express their gratitude to Dr. Jiaqiang Gao at the Testing Centre of Baosteel Research Institute for his help in TEM operations and valuable discussions. The authors are also indebted to Engineer Guobin Song for performing the weld simulations in a Gleeble 3800 system.


  1. 1.
    Jun HJ, Kang KB, Park CG (2003) Scripta Mater 49:1081CrossRefGoogle Scholar
  2. 2.
    Hong SG, Kang KB, Park CG (2002) Scripta Mater 46:163CrossRefGoogle Scholar
  3. 3.
    Poths RM, Higginson RL, Palmiere EJ (2001) Scripta Mater 44:147CrossRefGoogle Scholar
  4. 4.
    Craven AJ, He K, Garvie LAJ, Baker TN (2000) Acta Mater 48:3857CrossRefGoogle Scholar
  5. 5.
    Pandit A, Murugaiyan A, Podder AS, Haldar A, Bhattacharjee D, Chandra S, Ray RK (2005) Scripta Mater 53:1309CrossRefGoogle Scholar
  6. 6.
    Hong SG, Jun HJ, Kang KB, Park CG (2003) Scripta Mater 48:1201CrossRefGoogle Scholar
  7. 7.
    Shanmugam S, Tanniru M, Misra RDK, Panda D, Jansto S (2005) Mater Sci Technol 21:883CrossRefGoogle Scholar
  8. 8.
    Zou H, Kirkaldy JS (1992) Metall Trans A 23:651CrossRefGoogle Scholar
  9. 9.
    Okaguchi S, Hashimoto T (1992) ISIJ Int 32:283CrossRefGoogle Scholar
  10. 10.
    Liu ZK (2004) Scripta Mater 50:601CrossRefGoogle Scholar
  11. 11.
    Inoue K, Ishikawa N, Ohnuma I, Ohtani H, Ishida K (2001) ISIJ Int 41:175CrossRefGoogle Scholar
  12. 12.
    Suzuki S, Weatherly GC, Houghton DC (1987) Acta Mater 35:341CrossRefGoogle Scholar
  13. 13.
    Zeng Y, Wang W (2008) J Mater Sci 43:874. doi: CrossRefGoogle Scholar
  14. 14.
    Cao JC, Yong QL, Liu QY, Sun XJ (2007) J Mater Sci 42:10080. doi: CrossRefGoogle Scholar
  15. 15.
    Davis CL, Strangwood M (2002) J Mater Sci 37:1083. doi: CrossRefGoogle Scholar
  16. 16.
    Bang KS, Park C, Liu S (2006) J Mater Sci 41:5994. doi: CrossRefGoogle Scholar
  17. 17.
    Ashby MF, Easterling KE (1982) Acta Mater 30:1969CrossRefGoogle Scholar
  18. 18.
    Tian DW, Karjalainen LP, Qian B, Chen X (1996) Metall Mater Trans A 27:4031CrossRefGoogle Scholar
  19. 19.
    Wang W, Wang HR (2007) Mater Lett 61:2227CrossRefGoogle Scholar
  20. 20.
    Dutta B, Sellars CM (1987) Mater Sci Technol 3:197CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Metallurgical Process DepartmentBaosteel Research InstituteShanghaiPeople’s Republic of China

Personalised recommendations