Advertisement

Journal of Materials Science

, Volume 44, Issue 1, pp 346–349 | Cite as

Solid-state preparation and dental application of an organically modified calcium phosphate

  • Robert L. Karlinsey
  • Allen C. Mackey
Letter

Mechanochemical (MC) ball milling is a unique type of milling that has been in use as early as 1922 and smashes elements, oxides, ceramics, powders, etc. together to form new alloys or composites, entirely in the solid state [1, 2, 3]. This destructive process deforms components through powerful ball–particle, particle–wall, and particle–particle collisions, creating significant grain boundaries at the nanoscale where components have fractured and fused [4, 5]. In order to generate the energy required for such fracturing and welding, typically the vessel containing the balls and material are rotated opposite to the direction of the rotating platform on which the vessel is placed. The resultant hybrid materials formed from this physical and chemical process have enabled material synthesis to extend beyond the usual wet laboratory synthetic procedures and open up a myriad of new opportunities. Examples include the extraction of elements from fluorescent powder for energy conservation,...

Keywords

Calcium Phosphate Sodium Lauryl Sulfate Ionic Fluoride Dental Product Milling Event 

Notes

Acknowledgements

This work was supported in part by a grant from the Indiana 21st Century Research and Technology Fund. We also thank G. K. Stookey, B. R. Schemehorn, and A. M. Pfarrer for valuable discussions and input.

References

  1. 1.
    Murty BS, Ranganathan S (1998) Int Mater Rev 43:101CrossRefGoogle Scholar
  2. 2.
    Lomaeva SF, Povstugar VI, Bystrov SG, Mikhailova SS (2001) Colloid J 63:375CrossRefGoogle Scholar
  3. 3.
    Lee K-M, Weissgarber T, Kieback B (2004) J Mater Sci 39:5235. doi: https://doi.org/10.1023/B:JMSC.0000039217.45509.11 CrossRefGoogle Scholar
  4. 4.
    McCormick PG, Tsuzuki T, Robinson JS, Ding J (2001) Adv Mater 13:1008CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Mio H, Lee J, Nakagawa T, Kano J, Saito F (2001) Mater T 42:2460CrossRefGoogle Scholar
  7. 7.
    Valdre G, Zacchini D, Berti R, Costa A, Alessandrini A, Zucchetti P, Valdre U (1999) Nanostruct Mater 11:821CrossRefGoogle Scholar
  8. 8.
    Wong S-C, Sutherland EM, Uhl FM (2006) Mater Manuf Processes 20:159CrossRefGoogle Scholar
  9. 9.
    Kaczmarek WA, Ninham BW (1995) Mater Chem Phys 40:21CrossRefGoogle Scholar
  10. 10.
    Zhang F, Chang J, Lu J, Lin K, Ning C (2007) Acta Biomater 3:896CrossRefGoogle Scholar
  11. 11.
    Ghosh SK, Nandi SK, Kundu B, Datta S, De DK, Roy SK, Basu D (2008) J Biomed Mater Res B 86:217CrossRefGoogle Scholar
  12. 12.
    Miao S, Cheng K, Weng W, Du P, Shen G, Han G, Yan W, Zhang S (2008) Acta Biomater 4:441CrossRefGoogle Scholar
  13. 13.
    Welzel T, Meyer-Zaika W, Epple M (2004) Chem Commun 1204Google Scholar
  14. 14.
    Dedhiya MG, Young F, Higuchi WI (1974) J Phys Chem 78:1273CrossRefGoogle Scholar
  15. 15.
    LeGeros RZ (1999) J Clin Dent 10:65Google Scholar
  16. 16.
    Yin Y, Alivisatos AP (2005) Nature 437:664CrossRefGoogle Scholar
  17. 17.
    Yashima M, Sakai A, Kamiyama T, Hoshikawa A (2003) J Solid State Chem 175:272CrossRefGoogle Scholar
  18. 18.
    Manzke A, Pfahler C, Dubbers O, Plettl A, Ziemann P, Crespy D, Schreiber E, Ziener UL, Landfester K (2007) Adv Mater 19:1337CrossRefGoogle Scholar
  19. 19.
    Rodriguez-Hornedo N, Murphy D (2004) J Pharm Sci 93:449CrossRefGoogle Scholar
  20. 20.
    White DJ (1987) Caries Res 21:126CrossRefGoogle Scholar
  21. 21.
    ten Cate JM, Timmer K, Shariati M, Featherstone JDB (1988) Caries Res 22:20CrossRefGoogle Scholar
  22. 22.
    Tavss EA, Mellberg JR, Joziak M, Gambogi RJ, Fisher SW (2003) Am J Dent 16:369Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Indiana NanotechIndianapolisUSA

Personalised recommendations