Advertisement

Journal of Materials Science

, Volume 44, Issue 6, pp 1528–1539 | Cite as

Volume fraction effect on high strain rate properties of syntactic foam composites

  • E. WoldesenbetEmail author
  • S. Peter
Syntactic and Composite Foams

Abstract

The volume fraction effect on the high strain rate compressive properties of syntactic foams is characterized using a pulse-shaped Split-Hopkinson Pressure Bar (SHPB) technique. Eighteen different types of syntactic foams are fabricated with the same matrix resin system but six different microballoon volume fractions and three different size microballoons. The volume fractions of the microballoons in the syntactic foams are maintained at 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. The microballoons have the same mean outer radius of 40 μm, but different internal radii leading to a difference in their density. Analysis is carried out on the effect of microballoon volume fractions on the high strain rate properties for each type of syntactic foam. This approach is helpful in understanding the effect of microballoon reinforcement at different volume fractions on the dynamic compressive properties of syntactic foams. The results at high strain rates are compared to quasi-static strain rate compressive properties of the same material. The results show that there is a decrease in both compressive strength and modulus as the microballoon volume fraction increases for the same type of syntactic foam at all strain rates. However, at strain rates of quasi-static and 450/s, the decrease tends to be gradual across all volume fractions, while for strain rates of 800/s, there is a dramatic decrease from 10 to 20% followed by a gradual decline for most specimens. The fracture mode plays a major role in the dynamic behavior of syntactic foams.

Keywords

High Strain Rate Peak Stress Syntactic Foam Strain Rate Effect Glycidyl Ether 

Notes

Acknowledgements

This work was supported by DOW Chemical Company, 3M, and National Science Foundation (Grant No. HRD-0734845).

References

  1. 1.
    Gibson LJ, Ashby MF (1997) Cellular solids, structures and properties. Cambridge, UKGoogle Scholar
  2. 2.
    Ashida K (1995) Handbook of plastic foams: types, properties, manufacture and applications. New JerseyGoogle Scholar
  3. 3.
    Karthikeyan CS, Kishor, Sankaran S (2001) J Reinf Plast Comp 20(11):982Google Scholar
  4. 4.
    Gupta N, Woldesenbet E (2003) Compos Struct 61:311CrossRefGoogle Scholar
  5. 5.
    Shutov FV (1986) Adv Polym Sci 73:63CrossRefGoogle Scholar
  6. 6.
    Kim HH, Oh HH (2000) J Appl Polym Sci 76:1324CrossRefGoogle Scholar
  7. 7.
    Smiley LH (1986) Mater Eng 103:27Google Scholar
  8. 8.
    Noor AK, Burton WS, Bert CW (1996) Appl Mech Rev 49:155CrossRefGoogle Scholar
  9. 9.
    Gupta N, Kishore, Woldesenbet E, Sankaran S (2001) J Mater Sci 36:4485. doi: https://doi.org/10.1023/A:1017986820603 CrossRefGoogle Scholar
  10. 10.
    Corigliano A, Rizzi E, Papa E (2000) Compos Sci Technol 60:2169CrossRefGoogle Scholar
  11. 11.
    Narkis M, Puterman M, Kenig S (1980) J Cell Plast 16:326CrossRefGoogle Scholar
  12. 12.
    Gupta N, Woldesenbet E (2004) J Cell Plast 40:461CrossRefGoogle Scholar
  13. 13.
    Karthikeyan CS, Sankaran S, Jagdish Kumar MN et al (2001) J Appl Poly Sci 81:405CrossRefGoogle Scholar
  14. 14.
    Rizzi E, Papa E, Corignlina A (2000) Int J Solids Struct 37:5773CrossRefGoogle Scholar
  15. 15.
    Bunn R, Mottram JT (1993) Composites 24(7):565CrossRefGoogle Scholar
  16. 16.
    Progelhof RC. In Proceedings of Instrumented Impact Testing of Plastics and Composite Materials, Houston, March (ASTM), p 105Google Scholar
  17. 17.
    Sounik DF, Gansen P, Clemons JL et al (1997) J Mater Manuf 106(5):211Google Scholar
  18. 18.
    Chen W, Lu F, Winfree N (2002) Exp Mech 42(1):62CrossRefGoogle Scholar
  19. 19.
    Rinde A, Hoge KG (1971) J Appl Polym Sci 15:1377CrossRefGoogle Scholar
  20. 20.
    Baker WE, Togami TC, Weider JC (1998) Int J Impact Eng 21(3):149CrossRefGoogle Scholar
  21. 21.
    Zhao H, Gary G (1998) Int J Impact Eng 21(10):827CrossRefGoogle Scholar
  22. 22.
    Song B, Chen W, Frew DJ (2004) J Compos Mater 38:915CrossRefGoogle Scholar
  23. 23.
    Woldesenbet E, Gupta N, Jadhav A (2005) J Mater Sci 40:4009. doi: https://doi.org/10.1007/s10853-005-1910-2 CrossRefGoogle Scholar
  24. 24.
    Cohen A, Yalvac S, Wetters DG (1992) In: 37th International SAMPE Symposium and Exhibition, Anaheim, CA, March 1992, (SAMPE), p 641Google Scholar
  25. 25.
    Hiel C, Dittman D, Ishai O (1993) Composites 24:447CrossRefGoogle Scholar
  26. 26.
    Ishai O, Hiel CJ (1992) J Compos Technol Res 14:155CrossRefGoogle Scholar
  27. 27.
    Gupta N, Woldesenbet E, Kishore (2002) J Mater Sci 37:3199. doi: https://doi.org/10.1023/A:1016166529841 CrossRefGoogle Scholar
  28. 28.
    Kolsky H (1949) Proc Phys Soc B62:676CrossRefGoogle Scholar
  29. 29.
    Kaiser MA, Wicks A, Wilson et al (1998) Thesis Virginia Polytechnic Institute and State University, Blacksburg, Virginia, p 1Google Scholar
  30. 30.
    Gama BA, Gillespie JW, Hassan M et al (2001) J Compos Mater 35:1201CrossRefGoogle Scholar
  31. 31.
    Lindholm US (1964) J Mech Phys Solids 12:317CrossRefGoogle Scholar
  32. 32.
    Gilat A, Goldberg RK, Roberts GD (2002) Compos Sci Technol 62:1469CrossRefGoogle Scholar
  33. 33.
    Woldesenbet E, Vinson JR (1999) AIAA J 37:1102CrossRefGoogle Scholar
  34. 34.
    Woldesenbet E, Vinson JR (2001) J Compos Mater 35:509CrossRefGoogle Scholar
  35. 35.
    Woldesenbet E, Peters S (2007) In: the Proceedings of the 22nd American Society for Composites Conference, Seattle, WashingtonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentLouisiana State UniversityBaton RougeUSA

Personalised recommendations