Journal of Materials Science

, 43:7057

Physical characterization of Y2O3–CeO2–TiO2 (YCT) mixed oxides and Ni/YCT cermets as anodes in solid oxide fuel cells

  • X. Mantzouris
  • G. Triantafyllou
  • F. Tietz
  • P. Nikolopoulos
Article

Abstract

Mixed oxides in the binary Y2O3–CeO2 (YC) and ternary Y2O3–CeO2–TiO2 (YCT) systems as well as the corresponding Ni cermets were evaluated in terms of application as anodes in solid oxide fuel cells (SOFCs) between 650 and 900 °C. X-ray diffraction (XRD) analysis of the YCT powders calcined up to 1,400 °C showed the cubic fluorite structure of YC and also the formation of an additional phase with pyrochlore structure. The thermal expansion of the ceramics measured in air and Ar/4% H2 showed no significant differences in the temperature range of 25–800 °C. The absolute values of the total electrical conductivity of the ceramics measured between 450 and 900 °C in Ar/4% H2 increased by about 1–2 orders of magnitude compared to those measured in air. Ni/Y0.20Ce0.80O1.9 and Ni/Y0.20C0.75Ti0.05O1.9 cermets with 40 vol% Ni exhibited improved long-term stability regarding their electrical conductivity after annealing at 1,000 °C. The diffusion coefficient of Ce in the 8YSZ electrolyte was measured by compatibility tests. Electrochemical measurements on single SOFCs showed high polarization resistance at the anode/electrolyte interface.

References

  1. 1.
    Uchida H, Suzuki H, Watanabe M (1998) J Electrochem Soc 145:615CrossRefGoogle Scholar
  2. 2.
    Marina OA, Primdahl S, Bagger C, Mogensen M (1997) In: Stimming U et al (eds) Proceedings of the 5th International Symposium on SOFC, The Electrochemical Society, vol 18, p 540Google Scholar
  3. 3.
    Mitsuyasu H, Nonaka Y, Eguchi K (1998) Solid State Ionics 113–115:279CrossRefGoogle Scholar
  4. 4.
    Shannon RD (1976) Acta Crystalogr A32:751CrossRefGoogle Scholar
  5. 5.
    Tietz F, Jungen W, Lersch P, Figaj M, Becker KD, Skarmoutsos D (2002) Chem Mater 14:2252CrossRefGoogle Scholar
  6. 6.
    Armstrong TR, Stevenson JW, Pederson LR, Raney PE (1996) J Electrochem Soc 143:2919CrossRefGoogle Scholar
  7. 7.
    Mantzouris X, Zouvelou N, Haanappel VAC, Tietz F, Nikolopoulos P (2007) J Mater Sci 42:10152. doi:10.1007/s10853-007-2099-3 CrossRefGoogle Scholar
  8. 8.
    Mertens J, Haanappel VAC, Tropartz C, Herzhof W, Buchkremer HP (2006) J Fuel Cell Sci Technol 3:125CrossRefGoogle Scholar
  9. 9.
    Zhang TS, Ma J, Huang HT, Hing P, Xia ZT, Chan SH, Kilner JA (2003) Solid State Sci 5:1505CrossRefGoogle Scholar
  10. 10.
    Longo V, Podda L (1981) J Mater Sci Lett 16:839Google Scholar
  11. 11.
    Uematsu K, Shinozaki K, Sakurai O, Mizutani N, Kato M (1979) J Am Ceram Soc 62:219CrossRefGoogle Scholar
  12. 12.
    Skarmoutsos D, Tietz F, Nikolopoulos P (2001) Fuel Cells 1:243CrossRefGoogle Scholar
  13. 13.
    Sigalovsky J, Haggerty J, Sheehan J, Reynolds G (1996) Ceram Eng Sci Proc 17:322CrossRefGoogle Scholar
  14. 14.
    Mogensen G, Mogensen M (1993) Thermochim Acta 214:47CrossRefGoogle Scholar
  15. 15.
    Skarmoutsos D, Nikolopoulos P, Tietz F, Vinke IC (2004) Solid State Ionics 170:153CrossRefGoogle Scholar
  16. 16.
    Tuller HL, Nowick AS (1975) J Electrochem Soc 122:255CrossRefGoogle Scholar
  17. 17.
    Yamaguchi S, Kobayashi K, Abe K, Yamazaki S, Iguchi Y (1998) Solid State Ionics 113–115:393CrossRefGoogle Scholar
  18. 18.
    Yahiro H, Eguchi K, Arai H (1986) Solid State Ionics 21:37CrossRefGoogle Scholar
  19. 19.
    Eguchi K, Setoguchi T, Inoue T, Arai H (1992) Solid State Ionics 52:165CrossRefGoogle Scholar
  20. 20.
    Yahiro H, Baba Y, Eguchi K, Arai H (1988) J Electrochem Soc 135:2077CrossRefGoogle Scholar
  21. 21.
    Van Herle J, Horita T, Kawada T, Sakai N, Yokokawa H, Dokiya M (1996) Solid State Ionics 86–88:1255Google Scholar
  22. 22.
    Peng R, Xia C, Liu X, Peng D, Meng G (2002) Solid State Ionics 152–153:561CrossRefGoogle Scholar
  23. 23.
    Tianshu Z, Hing P, Huang H, Kilner J (2002) Solid State Ionics 148:567CrossRefGoogle Scholar
  24. 24.
    Tuller HL, Nowick AS (1977) J Phys Chem Solids 38:859CrossRefGoogle Scholar
  25. 25.
    Levy M, Fouletier J, Kleitz M (1980) J de Physique Colloque C6 41:335Google Scholar
  26. 26.
    Arai H, Kunisaki T, Shimizu Y, Seiyama T (1986) Solid State Ionics 20:241CrossRefGoogle Scholar
  27. 27.
    Wang S, Kobayashi T, Dokiya M, Hashimoto T (2000) J Electrochem Soc 147:3606CrossRefGoogle Scholar
  28. 28.
    Zouvelou N, Mantzouris X, Nikolopoulos P (2007) Int J Adhes Adhes 27:380CrossRefGoogle Scholar
  29. 29.
    Mantzouris X, Zouvelou N, Skarmoutsos D, Nikolopoulos P, Tietz F (2005) J Mater Sci 40:2471. doi:10.1007/s10853-005-1977-9 CrossRefGoogle Scholar
  30. 30.
    Eustathopoulos N, Drevet B (1998) Mater Sci Eng A249:176Google Scholar
  31. 31.
    Mogensen M, Lindegaard T, Hansen UR, Mogensen G (1994) J Electrochem Soc 141:2122CrossRefGoogle Scholar
  32. 32.
    Tsoga A, Naoumidis A, Stöver D (2000) Solid State Ionics 135:403CrossRefGoogle Scholar
  33. 33.
    Mai A, Haanappel VAC, Tietz F, Stöver D (2006) Solid State Ionics 177:2103CrossRefGoogle Scholar
  34. 34.
    Bekale VM, Legros C, Sattonnay G, Huntz AM, Lesage B, Argirusis C, Jomard F (2006) Defect Diffus Forum 258–260:46CrossRefGoogle Scholar
  35. 35.
    Tietz F, Wessel E (2002) In: Huijsmans J (ed) Proceedings of the 5th European SOFC Forum, European Fuel Cell Forum, Oberrohrdorf, Switzerland, vol 2, p 814Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • X. Mantzouris
    • 1
  • G. Triantafyllou
    • 1
  • F. Tietz
    • 2
  • P. Nikolopoulos
    • 1
  1. 1.Department of Chemical EngineeringUniversity of PatrasPatrasGreece
  2. 2.Forschungszentrum JülichInstitute of Energy Research (IEF-1)JuelichGermany

Personalised recommendations