Journal of Materials Science

, Volume 43, Issue 22, pp 7079–7083 | Cite as

Structural investigation of xAg2O · (100 − x)[2B2O3 · As2O3] glass system

  • I. ArdeleanEmail author
  • S. C. Baidoc


Structural analysis of xAg2O · (100 − x)[2B2O3 · As2O3] glass system, with 0 ≤ x ≤ 10 mol%, was performed by means of FT-IR and Raman spectroscopies. The purpose of this work is to investigate the structural changes that appear in the 2B2O3 · As2O3 glass matrix with the addition and increase of silver ions content. Boroxol rings, pyro-, ortho-, di-, tri-, tetra-, and penta-borate groups, structural units characteristic to As2O3 were found in the structure of the studied glasses. FT-IR spectroscopy measurements show that BO3 units are the main structural units of the glass system. The presence of structural units characteristic to Ag2O were not directly evidenced by FT-IR spectroscopy. Raman analysis leads to similar conclusions as that obtained from FT-IR measurements.


Boron Atom As2O3 Ag2O Borate Glass Silver Oxide 


  1. 1.
    Abo-Naf SM, El Batal FH, Azooz MA (2002) Mat Chem Phys 77:846Google Scholar
  2. 2.
    Griscom DL (1978) Materials science research on borate glasses. Plenum Press, New YorkGoogle Scholar
  3. 3.
    Chakradhar R, Murali PS, Rao A (1998) J Alloys Compd 265:29CrossRefGoogle Scholar
  4. 4.
    Akagai R, Ohtori N, Umesaki N (2001) J Non-Cryst Solids 293:471CrossRefGoogle Scholar
  5. 5.
    Srinivisarao G, Veeraiah N (2001) J Alloys Compd 327:52CrossRefGoogle Scholar
  6. 6.
    Ciceo Lucacel R, Ardelean I (2006) J Optoelectron Adv Mater 8(3):1124Google Scholar
  7. 7.
    Nassau K, Chadwick DL (1982) J Am Ceram Soc 65:197CrossRefGoogle Scholar
  8. 8.
    Clare AG, Wright AC, Sinclair RN, Galeener FL, Geissberger AE (1989) J Non-Cryst Solids 111:123CrossRefGoogle Scholar
  9. 9.
    Imaoka M, Hasegawa H (1980) Phys Chem Glasses 21:67Google Scholar
  10. 10.
    Beeman D, Lynds R, Anderson MR (1980) J Non-Cryst Solids 42:61CrossRefGoogle Scholar
  11. 11.
    Minami T (1975) J Non-Cryst Solids 73:273CrossRefGoogle Scholar
  12. 12.
    Calas G, Cormier L, Galoisy L, Jollivet P (2002) C R Acad Sci Ser IIc: Chim 5:831Google Scholar
  13. 13.
    Galeener FL, Lucovsky G, Mikkelsen JC Jr (1980) Phys Rev B 8:3983CrossRefGoogle Scholar
  14. 14.
    Galeener FL (1982) Solid State Commun 44:1037CrossRefGoogle Scholar
  15. 15.
    Condrate RA (1986) J Non-Cryst Solids 84:26CrossRefGoogle Scholar
  16. 16.
    Tarte P (1964) Physics of non crystalline solids. Wiley, New York, p 549Google Scholar
  17. 17.
    Selvara U, Rao KJ (1984) Spectrochim Acta A 40:1081CrossRefGoogle Scholar
  18. 18.
    Kamitsos EI, Karakassides MA, Chryssikos GD (1987) Phys Chem Glasses 28:203Google Scholar
  19. 19.
    Kamitsos EI, Karakassides MA, Chryssikos GD (1987) J Phys Chem 91:1073CrossRefGoogle Scholar
  20. 20.
    Kamitsos EI, Patsis AP, Karakassides MA, Chryssikos GD (1990) J Non-Cryst Solids 126:52CrossRefGoogle Scholar
  21. 21.
    Ducel JF, Videau JJ, Couzi M (1993) Phys Chem Glasses 34:5Google Scholar
  22. 22.
    Yiannopoulos YD, Chryssikos GD, Kamitsos EI (2001) Phys Chem Glasses 42:164Google Scholar
  23. 23.
    Maniu D, Iliescu T, Ardelean I, Cinta-Pinzaru S, Tarcea N, Kiefer W (2003) J Mol Struct 651:485CrossRefGoogle Scholar
  24. 24.
    Maniu D, Iliescu T, Ardelean I, Ciceo-Lucacel R, Bolboaca M, Kiefer W (2002) Vib Spectrosc 29:241CrossRefGoogle Scholar
  25. 25.
    Munia G, Rao KJ (1999) Solid State Chem 145:65CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of PhysicsBabes-Bolyai UniversityCluj NapocaRomania

Personalised recommendations