Journal of Materials Science

, Volume 43, Issue 22, pp 7073–7078 | Cite as

Photoluminescence of copper ion exchange BK7 glass planar waveguides

  • Yunqiang Ti
  • Feng Qiu
  • Yinghui Cao
  • Linghua Jia
  • Weiping Qin
  • Jie ZhengEmail author
  • Gerald Farrell


Copper–alkali ion exchange technology was used to prepare BK7 glass planar waveguides. The photoluminescence spectra of the waveguides were studied with fluorescence spectrophotometer. It was observed that there were strong emission peaks at around 520 nm, which were strongly influenced by the ion-exchange times. Besides the time, the ion-exchange temperature was important factor as well, the higher ion-exchange temperature was found to bring a blue shift of emission spectra. The blue–green emission band originates from different transition mechanism of energy level. The spectroscopy features of copper within the glass host were also affected by the excitation wavelength, which resulted in a shift of the emission band peaks.


Emission Band Photoluminescence Intensity Glass Host Electronic Excitation Energy Transfer Strong Emission Band 



The research project has been supported by National Natural Science Foundation of China (No. 60577008, 60777038), China–Ireland Science and Technology Collaboration Research Fund and International cooperation project (No. 20070708-3) of Jilin Provincial Science & Technology Department of China.


  1. 1.
    Ramaswamy RV, Srivastava R (1988) IEEE J Lightwave Technol 6:984CrossRefGoogle Scholar
  2. 2.
    Martin M, Videau JJ, Canioni L, Adameitz F, Sarger L, Leflem G (2000) Appl Opt 39:435CrossRefGoogle Scholar
  3. 3.
    Yoko T, Nishiwaki T, Kamiya K, Sakka SJ (1991) J Am Ceram Soc 74:1104CrossRefGoogle Scholar
  4. 4.
    Márquez H, Salazar D, Villalobos A, Paez G, Rincón JM (1995) Appl Opt 34:5817CrossRefGoogle Scholar
  5. 5.
    D’Acapito F, Colonna S, Mobilio S, Gonella F, Cattaruzza E, Mazzoldi P (1997) Appl Phys Lett 71:2611CrossRefGoogle Scholar
  6. 6.
    Bogomolova LD, Fedorov AG, Kubrinskaya ME, Lazukin VN, Pavlushkina TK, Serpov PV (1985) J Non-Cryst Solids 72:109CrossRefGoogle Scholar
  7. 7.
    Gonella F, Quaranta A, Padovni S, Sada C, D’acapito F, Maurizio C, Battaglin G, Cattaruzza E (2005) Appl Phys A 81:1065CrossRefGoogle Scholar
  8. 8.
    Spirkova J, Tresnakova P, Malichova H, Mika M (2007) J Phys Chem Solids 68:1276CrossRefGoogle Scholar
  9. 9.
    Pedrini C, Jaquier B (1980) J Phys C Solid State Phys 13:4791CrossRefGoogle Scholar
  10. 10.
    Sakka S, Kamiya K, Kato K (1982) J Non-Cryst Solids 52:77CrossRefGoogle Scholar
  11. 11.
    Erwin SC, Lin CC (1989) Phys Rev B 40:1892CrossRefGoogle Scholar
  12. 12.
    Borsella E, Dal Vecchio A, Garcia MA, Sada C, Gonella F, Polloni R, Quaranta A, Van Wilderen LJGW (2002) J Appl Phys 91:90CrossRefGoogle Scholar
  13. 13.
    White JM, Heidrich PF (1976) Appl Opt 15:151CrossRefGoogle Scholar
  14. 14.
    Gonella F, Caccavale F, Bogomolova LD, D’Acapito F, Quaranta A (1998) J Appl Phys 83:1200CrossRefGoogle Scholar
  15. 15.
    Inman JM, Houde-Walter SN, McIntyre BL, Liao ZM, Parker RS, Simmons V (1996) J Non-Cryst Solids 194:85CrossRefGoogle Scholar
  16. 16.
    Dong Y, Gao YJ, Zhang LT, Jia LH, Zheng J (2008) J Optoelectron Laser 19:443Google Scholar
  17. 17.
    Miliou AN, Srivastava R, Ramaswamy RV (1991) Appl Opt 30:674CrossRefGoogle Scholar
  18. 18.
    Tessman JR, Kahn AH, Shockley W (1953) Phys Rev 92:890CrossRefGoogle Scholar
  19. 19.
    Brandenburg A (1986) J Lightwave Technol 4:1580CrossRefGoogle Scholar
  20. 20.
    Debnath R, Das SK (1989) Chem Phys Lett 155:52CrossRefGoogle Scholar
  21. 21.
    Pedrini C (1978) Phys Status Solidi B 87:273CrossRefGoogle Scholar
  22. 22.
    Annapurna K, Kumar A, Dwivedi RN, Sooraj Hussain N, Buddhudu S (2000) Mater Lett 45:23CrossRefGoogle Scholar
  23. 23.
    Oliver A, Cheang-Wong JC, Roiz J, Hernández JM, Rodriguez-Fernández L, Crespo A (2001) Nucl Instr Methods Phys Res B 175–177:495CrossRefGoogle Scholar
  24. 24.
    Berg JM, Chien RL, McClure DS (1987) J Chem Phys 87:7CrossRefGoogle Scholar
  25. 25.
    Tanaka K, Yano T, Shibata S, Yamane M, Inoue S (1994) J Non-Cryst Solids 178:9CrossRefGoogle Scholar
  26. 26.
    Fujimoto Y, Nakatsuta M (1977) J Lumin 75:213CrossRefGoogle Scholar
  27. 27.
    Klonkowski A, Gryczynski I (1981) J Non-Cryst Solids 44:415CrossRefGoogle Scholar
  28. 28.
    Duffy JA, Ingram MD (1976) J Non-Cryst Solids 21:373CrossRefGoogle Scholar
  29. 29.
    Debnath R (1989) J Lumin 43:375CrossRefGoogle Scholar
  30. 30.
    Auzel F, Pelle F (1996) J Lumin 69:249CrossRefGoogle Scholar
  31. 31.
    Cable M, Xiang ZD (1992) Phys Chem Glasses 33:154Google Scholar
  32. 32.
    Vij DR (1998) Luminescence of solids. Plenum Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yunqiang Ti
    • 1
  • Feng Qiu
    • 1
  • Yinghui Cao
    • 1
  • Linghua Jia
    • 1
  • Weiping Qin
    • 1
  • Jie Zheng
    • 1
    Email author
  • Gerald Farrell
    • 2
  1. 1.State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and EngineeringJilin UniversityChangchunChina
  2. 2.Applied Optoelectronics CentreDublin Institute of TechnologyDublinIreland

Personalised recommendations