Pearlite in hypoeutectoid iron–nitrogen binary alloys
Article
First Online:
- 203 Downloads
- 5 Citations
Abstract
In this study, hypoeutectoid Fe–N binary specimens have been prepared by gas nitriding pure iron in austenite domain at 840 °C. The slow cooling of these specimens led to the α-ferrite + γ′-Fe4N pearlitic microstructure which is similar to the pearlite in Fe–C binary system. This pearlitic microstructure has been characterized by electron microscopy. The crystal structure of the γ′-Fe4N nitride has been identified by electron microdiffraction and the Nishiyama–Wassermann (N–W) and near Kurdjumov–Sachs (K–S) orientation relationships have been found between the α-ferrite and the γ′-Fe4N.
Keywords
Ferrite Austenite Pearlite Orientation Relationship Interlamellar SpacingNotes
Acknowledgements
This work is financially supported by ArcelorMittal SA. One of the authors (A. R.) is grateful to Dr A. Handaj for helpful discussions.
References
- 1.Kunze J (1990) Nitrogen and carbon in iron and steel thermodynamics. Akademie-Verlag, BerlinGoogle Scholar
- 2.Kunze J (1986) Steel Res 57:361CrossRefGoogle Scholar
- 3.Agren J (1979) Metall Trans A 10A:1847CrossRefGoogle Scholar
- 4.Hillert M, Jarl M (1975) Metall Trans A 6A:553CrossRefGoogle Scholar
- 5.Pickering FB (1980) Tisco 27:105Google Scholar
- 6.Bell T, Owen WS (1967) J Iron Steel Inst 428Google Scholar
- 7.Gavriljuk VG, Berns H (1999) High nitrogen steels. Springer, BerlinCrossRefGoogle Scholar
- 8.Jack DH, Jack KH (1973) Mater Sci Eng 11:1CrossRefGoogle Scholar
- 9.Braune H (1905) Rev Mét 2:49Google Scholar
- 10.Fry A (1923) Kruppsche Monatschefte 4:138Google Scholar
- 11.Bose BN, Hawkes MF (1950) Trans AIME 188:307Google Scholar
- 12.Williams J et al (1968) In: Proceedings of international symposium by the Institute of Metals, University of Manchester, July 3 to 5, 1968, Monograph & Report Series No. 33, pp 49–53Google Scholar
- 13.Bell T, Farnell BC (1971) In: Proceedings of the international symposium on metallurgical chemistry—applications in ferrous metallurgy, SheffieldGoogle Scholar
- 14.Lehrer E (1930) Z Elektrochem 36:383Google Scholar
- 15.Xiong XC, Redjaïmia A, Goune M (2008) J Mater Sci (submitted)Google Scholar
- 16.Morniroli JP, Steeds JW (1992) Ultramicroscopy 45:219CrossRefGoogle Scholar
- 17.Redjaimia A, Morniroli JP (1994) Ultramicroscopy 53:305CrossRefGoogle Scholar
- 18.Steeds JW, Vincent R (1983) J Microsc Spectrosc Electron 8:617Google Scholar
- 19.Nishiyama Z (1934) Sci Rep Tohoku Univ 23:638Google Scholar
- 20.Wasserman G (1933) Arch Eisenhuttenwesen 16:647Google Scholar
- 21.Kurdjumov G, Sachs G (1939) Z Physik 64:325CrossRefGoogle Scholar
- 22.Cahn JW, Kalonji G (1982) In: Aaronson HI, Sekereka RF, Laughlin DE, Waymann CM (eds) Proceedings of the conference on solid-solid phase transitions, Metall Soc AIME, WarrendaleGoogle Scholar
- 23.Hillert M (1962) Decomposition of austenite by diffusional processes. Interscience Publishers, New YorkGoogle Scholar
- 24.Modin S (1951) Jernkont Ann 135:169Google Scholar
- 25.Modin S (1958) Jernkont Ann 142:37Google Scholar
- 26.Thompson SW, Howell PR (1988) Scripta Metallurgica 22:1775CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC 2008