Journal of Materials Science

, Volume 44, Issue 2, pp 632–638 | Cite as

Pearlite in hypoeutectoid iron–nitrogen binary alloys

  • X. C. Xiong
  • A. RedjaïmiaEmail author
  • M. Gouné


In this study, hypoeutectoid Fe–N binary specimens have been prepared by gas nitriding pure iron in austenite domain at 840 °C. The slow cooling of these specimens led to the α-ferrite + γ′-Fe4N pearlitic microstructure which is similar to the pearlite in Fe–C binary system. This pearlitic microstructure has been characterized by electron microscopy. The crystal structure of the γ′-Fe4N nitride has been identified by electron microdiffraction and the Nishiyama–Wassermann (N–W) and near Kurdjumov–Sachs (K–S) orientation relationships have been found between the α-ferrite and the γ′-Fe4N.


Ferrite Austenite Pearlite Orientation Relationship Interlamellar Spacing 



This work is financially supported by ArcelorMittal SA. One of the authors (A. R.) is grateful to Dr A. Handaj for helpful discussions.


  1. 1.
    Kunze J (1990) Nitrogen and carbon in iron and steel thermodynamics. Akademie-Verlag, BerlinGoogle Scholar
  2. 2.
    Kunze J (1986) Steel Res 57:361CrossRefGoogle Scholar
  3. 3.
    Agren J (1979) Metall Trans A 10A:1847CrossRefGoogle Scholar
  4. 4.
    Hillert M, Jarl M (1975) Metall Trans A 6A:553CrossRefGoogle Scholar
  5. 5.
    Pickering FB (1980) Tisco 27:105Google Scholar
  6. 6.
    Bell T, Owen WS (1967) J Iron Steel Inst 428Google Scholar
  7. 7.
    Gavriljuk VG, Berns H (1999) High nitrogen steels. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Jack DH, Jack KH (1973) Mater Sci Eng 11:1CrossRefGoogle Scholar
  9. 9.
    Braune H (1905) Rev Mét 2:49Google Scholar
  10. 10.
    Fry A (1923) Kruppsche Monatschefte 4:138Google Scholar
  11. 11.
    Bose BN, Hawkes MF (1950) Trans AIME 188:307Google Scholar
  12. 12.
    Williams J et al (1968) In: Proceedings of international symposium by the Institute of Metals, University of Manchester, July 3 to 5, 1968, Monograph & Report Series No. 33, pp 49–53Google Scholar
  13. 13.
    Bell T, Farnell BC (1971) In: Proceedings of the international symposium on metallurgical chemistry—applications in ferrous metallurgy, SheffieldGoogle Scholar
  14. 14.
    Lehrer E (1930) Z Elektrochem 36:383Google Scholar
  15. 15.
    Xiong XC, Redjaïmia A, Goune M (2008) J Mater Sci (submitted)Google Scholar
  16. 16.
    Morniroli JP, Steeds JW (1992) Ultramicroscopy 45:219CrossRefGoogle Scholar
  17. 17.
    Redjaimia A, Morniroli JP (1994) Ultramicroscopy 53:305CrossRefGoogle Scholar
  18. 18.
    Steeds JW, Vincent R (1983) J Microsc Spectrosc Electron 8:617Google Scholar
  19. 19.
    Nishiyama Z (1934) Sci Rep Tohoku Univ 23:638Google Scholar
  20. 20.
    Wasserman G (1933) Arch Eisenhuttenwesen 16:647Google Scholar
  21. 21.
    Kurdjumov G, Sachs G (1939) Z Physik 64:325CrossRefGoogle Scholar
  22. 22.
    Cahn JW, Kalonji G (1982) In: Aaronson HI, Sekereka RF, Laughlin DE, Waymann CM (eds) Proceedings of the conference on solid-solid phase transitions, Metall Soc AIME, WarrendaleGoogle Scholar
  23. 23.
    Hillert M (1962) Decomposition of austenite by diffusional processes. Interscience Publishers, New YorkGoogle Scholar
  24. 24.
    Modin S (1951) Jernkont Ann 135:169Google Scholar
  25. 25.
    Modin S (1958) Jernkont Ann 142:37Google Scholar
  26. 26.
    Thompson SW, Howell PR (1988) Scripta Metallurgica 22:1775CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Laboratoire de Science et Génie des SurfacesNancy-Université, CNRSNancyFrance
  2. 2.ArcelorMittal SAMaizieres-les-MetzFrance

Personalised recommendations