Journal of Materials Science

, Volume 44, Issue 9, pp 2276–2287 | Cite as

Role of process type and process conditions on phase content and physical properties of thermal sprayed TiO2 coatings

  • J. R. Colmenares-AnguloEmail author
  • V. Cannillo
  • L. Lusvarghi
  • A. Sola
  • S. Sampath
Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday


Thermal spray represents an advantageous technique for depositing large-area titanium dioxide coatings that are of interest for both traditional wear-resistant coatings as well as functional applications such as photo-induced decontamination surfaces. Numerous past studies have examined the phase evolution and properties of TiO2 coatings using different thermal spray processes or parameters. In this paper, an integrated study of thermal sprayed TiO2 was conducted with different thermal spray devices and process parameters for a single feedstock powder comprising the metastable anatase phase. The aforementioned variables are correlated with in-flight particle state (particle temperature and velocity), phase evolution, and coating physical properties. The results are represented through the framework of process maps which connect process parameters with material properties. Based on the phase characterization, an initial exploration of the metastable phase evolution during thermal spray deposition of TiO2 is proposed. Furthermore, the sprayed TiO2 coatings show varying degrees of electrical conductivity associated with process-induced stoichiometric changes (vacancy generation) in the TiO2. The effects of these stoichiometric changes as well as extrinsic microstructural attributes (pores, cracks, interfaces), contribute to the complex electrical response of the coatings. This integrated study provides insights into the process–microstructure–property relationship with the ultimate goal of tailoring the functionality of spray deposited oxide thick films.


TiO2 Thermal Spray Particle Temperature High Velocity Oxygen Fuel Atmospheric Plasma Spray 



This research was supported by the National Science Foundation through the GOALI-FRG program supported jointly by the Division of Materials Research and the Division of Materials Processing and Manufacturing under award CMMI 0605704. Prof. Cannillo and the University of Modena Team acknowledge support of MIUR, Italy (Programmi per l’incentivazione del processo di internazionalizzazione del sistema universitario).


  1. 1.
    Diebold U (2003) Surf Sci Rep 48:53CrossRefGoogle Scholar
  2. 2.
    Fujishima A, Rao TN, Tryk DA (2000) J Photochem Photobiol C Photochem Rev 1:1CrossRefGoogle Scholar
  3. 3.
    Hashimoto K, Kawai T, Sakata T (1984) J Phys Chem 88(18):4083CrossRefGoogle Scholar
  4. 4.
    Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) J Phys Chem 89:5689CrossRefGoogle Scholar
  5. 5.
    Logothetis E (1980) In: Ceramic engineering and science proceedings, p 1Google Scholar
  6. 6.
    Yan MF, Rhodes WW (1982) Appl Phys Lett 40:536CrossRefGoogle Scholar
  7. 7.
    Campbell SA, Kim H-S, Gilmer DC, He B (1999) IBM J Res Dev 43Google Scholar
  8. 8.
    Lee C, Choi H, Lee C, Kim H (2003) Surf Coat Technol 173:192CrossRefGoogle Scholar
  9. 9.
    Lima R, Marple B, Li H, Khor K (2006) J Therm Spray Technol 15:623CrossRefGoogle Scholar
  10. 10.
    Ohsaki H, Tachibana Y, Hayashi A, Mitsui A, Hayashi Y (1999) Thin Solid Films 351:57CrossRefGoogle Scholar
  11. 11.
    Ye F, Ohmori A (2002) Surf Coat Technol 160:62CrossRefGoogle Scholar
  12. 12.
    Lima R, Marple B (2003) J Therm Spray Technol 12:360CrossRefGoogle Scholar
  13. 13.
    Toma F-L, Sokolov D, Bertrand G, Klein D, Coddet C, Meunier C (2006) J Therm Spray Technol 15:576CrossRefGoogle Scholar
  14. 14.
    Bertrand G, Berger-Keller N, Meunier C, Coddet C (2006) Surf Coat Technol 200:5013CrossRefGoogle Scholar
  15. 15.
    Lima R, Marple B (2003) J Therm Spray Technol 12:240CrossRefGoogle Scholar
  16. 16.
    Wang XY, Liu Z, Liao H, Klein D, Coddet C (2005) Thin Solid Films 473:177CrossRefGoogle Scholar
  17. 17.
    Li Y, Ishigaki T (2002) J Cryst Growth 242:511CrossRefGoogle Scholar
  18. 18.
    Sclafani A, Herrmann JM (1996) J Phys Chem 100:13655CrossRefGoogle Scholar
  19. 19.
    Bach FW, Mohwald K, Rothardt T, Prehm J, Engl L, Hartz K, Droler B (2004) Mater Sci Eng A 383:146CrossRefGoogle Scholar
  20. 20.
    Sun J, Gao L, Zhang Q (2003) J Am Ceram Soc 86:1677CrossRefGoogle Scholar
  21. 21.
    Wang Z, Kulkarni A, Deshpande S, Nakamura T, Herman H (2003) Acta Mater 51:5319CrossRefGoogle Scholar
  22. 22.
    Swindeman CJ, Seals RD, Murray WP, Cooper MH, Forbes KR (1995) An investigation of thermally-sprayed aluminum oxide coatings for high-temperature electrostatic chucks (ESCs). In: Semiconductor manufacturing, IEEE/UCS/SEMI international symposium, Institute of Electrical and Electronics Engineers, Austin, TX, USA, 1995Google Scholar
  23. 23.
    Xiong H-B, Zheng L-L, Li L, Vaidya A (2005) Int J Heat Mass Transfer 48:5121CrossRefGoogle Scholar
  24. 24.
    Branland N, Meillot E, Fauchais P, Vardelle A, Gitzhofer F, Boulos M (2006) J Therm Spray Technol 15:53CrossRefGoogle Scholar
  25. 25.
    Sharma A (2006) Anisotropic electrical properties of thermal spray coatings: the role of splat boundary interfaces. Doctoral Dissertation, Stony Brook University, 163 ppGoogle Scholar
  26. 26.
    Sampath S, Jiang X, Kulkarni A, Matejicek J, Gilmore DL, Neiser RA (2003) Mater Sci Eng A 348:54CrossRefGoogle Scholar
  27. 27.
    Turunen E, Varis T, Hannula SP, Vaidya A, Kulkarni A, Gutleber J, Sampath S, Herman H (2006) Mater Sci Eng A 415:1CrossRefGoogle Scholar
  28. 28.
    Vaidya A, Srinivasan V, Streibl T, Friis M, Chi W, Sampath S (2008) Mater Sci Eng A 497(1–2):239CrossRefGoogle Scholar
  29. 29.
    Planche MP, Coudert JF, Fauchais P (1998) Plasma Chem Plasma Process 18:263CrossRefGoogle Scholar
  30. 30.
    Zhang W, Zheng L, Zhang H, Sampath S (2007) Plasma Chem Plasma Process 27(6):701CrossRefGoogle Scholar
  31. 31.
    Srinivasan V, Vaidya A, Streibl T, Friis M, Sampath S (2006) J Therm Spray Technol 15:739CrossRefGoogle Scholar
  32. 32.
    Srinivasan V, Friis M, Vaidya A, Streibl T, Sampath S (2007) Plasma Chem Plasma Process 27:609CrossRefGoogle Scholar
  33. 33.
    Burlacov I, Jirkovsky J, Muller M, Heimann RB (2006) Surf Coat Technol 201:255CrossRefGoogle Scholar
  34. 34.
    Li JF, Ding CX (1998) J Mater Sci Lett 17:1747CrossRefGoogle Scholar
  35. 35.
    McPherson R (1984) Thin Solid Films 112:89CrossRefGoogle Scholar
  36. 36.
    Cowan RD (1963) J Appl Phys 34:926CrossRefGoogle Scholar
  37. 37.
    Degiovanni A, Laurent M (1986) Rev Phys Appl 21:229CrossRefGoogle Scholar
  38. 38.
    Vardelle M, Vardelle A, Leger A, Fauchais P, Gobin D (1995) J Therm Spray Technol 4:50CrossRefGoogle Scholar
  39. 39.
    Fauchais P (1995) J Therm Spray Technol 4:3CrossRefGoogle Scholar
  40. 40.
    Sampath S, Herman H (1996) J Therm Spray Technol 5:445CrossRefGoogle Scholar
  41. 41.
    Lee E-A, Lee S-W, Choi C-H, Kim H-S, Hockey B (2003) Mater Sci Forum 439:8Google Scholar
  42. 42.
    Li L, Kharas B, Zhang H, Sampath S (2007) Mater Sci Eng A 456:35CrossRefGoogle Scholar
  43. 43.
    Safai S (1979) In: Materials science and engineering, Stony Brook University, Stony Brook, p 250Google Scholar
  44. 44.
    Sharma A, Gouldstone A, Sampath S, Gambino R (2006) J Appl Phys 100:114906CrossRefGoogle Scholar
  45. 45.
    Cronemeyer DC (1952) Phys Rev 87:876CrossRefGoogle Scholar
  46. 46.
    Chiang Y-M, Birnie D, Kingery WD (1997) Physical ceramics: principles for ceramics science and engineering. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • J. R. Colmenares-Angulo
    • 1
    Email author
  • V. Cannillo
    • 2
  • L. Lusvarghi
    • 2
  • A. Sola
    • 2
  • S. Sampath
    • 1
  1. 1.Center for Thermal Spray Research Department of Materials Science and EngineeringStony Brook UniversityStony BrookUSA
  2. 2.Dipartimento di Ingegneria dei Materiali e dell’AmbienteUniversità di Modena e Reggio EmiliaModenaItaly

Personalised recommendations