Journal of Materials Science

, Volume 44, Issue 1, pp 266–273 | Cite as

Effects of alumina in nonmetallic brake friction materials on friction performance

  • Vladimír Tomášek
  • Gabriela KratošováEmail author
  • Rongping Yun
  • Yanli Fan
  • Yafei Lu


The effects of alumina (Al2O3) as an abrasive on brake friction performance and friction layers of nonmetallic brake friction materials were evaluated. Five experimental compositions containing from 0 to 14.6 vol% alumina were tested (Al2O3—0, 3.4, 5.6, 9.0, and 14.6 vol%). The experimental results indicated that alumina enhances friction coefficient and improves wear performance. The formation and development of friction layers were characterized using X-ray fluorescence spectrometry and scanning electron microscopy with energy dispersive X-ray analysis. Phenomena of baryte film and transferred iron-containing film formed on the friction surfaces were observed. Baryte films were detected on specimens containing from 0 to 5.6 vol% alumina. Iron-containing films were detected on surfaces of all alumina-containing specimens but not on the material without alumina. The role of abrasive in nonmetallic friction materials was studied in relation to formulation, friction performance, and friction surfaces.


Wear Rate MoS2 Friction Surface Friction Material Friction Layer 



The authors acknowledge National Natural Science Foundation of China (50673012), Twaron Research Fund (Teijin Twaron GmbH, Germany, 2007), Programs of International Cooperation funded by Ministry of Education, Youth and Sports of Czech Republic 1P05ME741, and Ministry of Education, Youth and Sports of the Czech Republic (MSM 6198910016) for their financial supports.


  1. 1.
    Lu Y, Tang CF, Zhao Y, Wright MA (2004) J Reinf Plast Compos 23:1537CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Han L, Huang L, Zhang J, Lu Y (2006) Compos Sci Tech 66:2895CrossRefGoogle Scholar
  4. 4.
    Lu Y (2002) Polym Compos 23:814CrossRefGoogle Scholar
  5. 5.
    Tang CF, Lu Y (2004) J Reinf Plast Compos 23:51CrossRefGoogle Scholar
  6. 6.
    Lu Y (2006) Compos Sci Tech 66:591CrossRefGoogle Scholar
  7. 7.
    Lu Y, Tang CF, Wright MA (2002) J Appl Polym Sci 84:2498CrossRefGoogle Scholar
  8. 8.
    Ma Y, Martynková GS, Valášková M, Matějka V, Lu Y (2008) Tribol Int 41(3):166CrossRefGoogle Scholar
  9. 9.
    Zhao Y, Lu Y, Wright MA (2006) Mater Design 27:833CrossRefGoogle Scholar
  10. 10.
    Fan Y, Han L, Lu Y (2006) Non-metall Mines 29(5):63 (in Chinese)Google Scholar
  11. 11.
    Eriksson M, Bergman F, Jacobson S (2002) Wear 252:26CrossRefGoogle Scholar
  12. 12.
    Eriksson M, Bergman F, Jacobson S (1999) Wear 232:163CrossRefGoogle Scholar
  13. 13.
    Landolt D, Mischler S, Stemp M, Barril S (2004) Wear 256:517CrossRefGoogle Scholar
  14. 14.
    Österle W, Urban I (2004) Wear 257:215CrossRefGoogle Scholar
  15. 15.
    Österle W, Griepentrog M, Th Gross, Urban I (2001) Wear 251:1469CrossRefGoogle Scholar
  16. 16.
    Österle W, Kloß H, Urban I, Dmitriev AI (2007) Wear 263:1189CrossRefGoogle Scholar
  17. 17.
    Cho MH, Cho KH, Kim SJ, Kim DH, Jang H (2005) Tribb Lett 20(2):101CrossRefGoogle Scholar
  18. 18.
    Ostermeyer GP, Muller M (2006) Trib Int 39:370CrossRefGoogle Scholar
  19. 19.
    Muller M, Ostermeyer GP (2007) Trib Int 40:942CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vladimír Tomášek
    • 1
  • Gabriela Kratošová
    • 1
    Email author
  • Rongping Yun
    • 2
  • Yanli Fan
    • 2
  • Yafei Lu
    • 2
  1. 1.Nanotechnology Centre, VSB-Technical University of OstravaOstrava-PorubaCzech Republic
  2. 2.The Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer MaterialsBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations