Journal of Materials Science

, Volume 44, Issue 6, pp 1469–1476 | Cite as

Effect of polyurethane composition and the fabrication process on scaffold properties

  • Monika BilEmail author
  • Joanna Ryszkowska
  • Krzysztof J. Kurzydłowski
Syntactic and Composite Foams


The microdomain structure of polyurethanes (PUR) determines their unique physical properties and makes polyurethanes attractive candidates for various tissue engineering applications. 3D scaffolds based on polyurethanes with different contents of hard segments were fabricated by a salt-leaching/polymer coagulation method. The process parameters were carefully considered, particularly the polymer solution concentration and characteristics of the polyurethane, which are the critical parameters for the control of porosity and pore size distribution. In this study, 3D polyurethane scaffolds were fabricated with interconnected pores and porosity from 64% to 80%. Pore size distribution was evaluated using quantitative image analysis and mercury intrusion porosimetry (MIP). The scaffolds fabricated from polyurethanes with 70 wt.% of hard-domain content were found to have the best compression properties.


Polyurethane Pore Size Distribution Hard Segment Mercury Intrusion Porosimetry Pore Throat 



This scientific work was financially supported by the Ministry of Science and Higher Education, grant R1301901. The authors wish to thank Professor Andrzej Dworak and Dr. Barbara Trzebicka of Centre of Polymer and Carbon Materials Polish Academy of Sciences for the GPC measurements.


  1. 1.
    Palsson B, Hubbell JA, Plonsey R et al (2003) Tissue engineering. CRC Press, Boca Raton, FloridaCrossRefGoogle Scholar
  2. 2.
    Bronzino JD (2006) Tissue engineering and artificial organs. CRC Press, Boca Raton, FloridaCrossRefGoogle Scholar
  3. 3.
    Oh SH, Park IK, Kim JM et al (2007) Biomaterials 28:1664CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Wang Z, Liu S et al (2004) Biomaterials 25:177CrossRefGoogle Scholar
  5. 5.
    Wei HJ, Liang H Ch, Lee MH et al (2005) Biomaterials 26:1905–1913CrossRefGoogle Scholar
  6. 6.
    Whang K, Healy KE, Elenz DR et al (1999) Tissue Eng 5:35CrossRefGoogle Scholar
  7. 7.
    Lu JX, Flautre B, Anselme K (1999) J Mater Sci Mater Med 10:111CrossRefGoogle Scholar
  8. 8.
    Karageorgiou V, Kaplan D (2005) Biomaterials 26:5474CrossRefGoogle Scholar
  9. 9.
    Hutmacher DW (2000) Biomaterials 21:2529CrossRefGoogle Scholar
  10. 10.
    Zhang J, Zhang H, Wu L, Ding J (2006) J Mater Sci 41:1725. doi: CrossRefGoogle Scholar
  11. 11.
    Draghi L, Resta S, Pirozzolo MG, Tanzi MC (2005) J Mater Sci Mater Med 16:1093CrossRefGoogle Scholar
  12. 12.
    Chen G, Ushida T, Tateishi T (2001) Mater Sci Eng C 17:63CrossRefGoogle Scholar
  13. 13.
    Mikos AG, Thorsen AJ, Czerwonka LA et al (1994) Polymer 35(5):1068CrossRefGoogle Scholar
  14. 14.
    Van Tienen TG, Heijkants RGJC, Buma P et al (2002) Biomaterials 23:1731CrossRefGoogle Scholar
  15. 15.
    Hou Q, Grijpma DW, Feijen J (2003) Biomaterials 24:1937CrossRefGoogle Scholar
  16. 16.
    Kim SS, Park MS, Jeon O et al (2006) Biomaterials 27:1399CrossRefGoogle Scholar
  17. 17.
    Hentze HP, Antonietti M (2002) Rev Mol Biotechnol 90:27CrossRefGoogle Scholar
  18. 18.
    Lamba NMK, Woodhouse KA, Cooper SL (1997) Polyurethanes in biomedical applications. CRC Press, New YorkGoogle Scholar
  19. 19.
    Chen KS, Leon Yu T, Chen YS et al (2001) J Polym Res 82:99CrossRefGoogle Scholar
  20. 20.
    Sanchez-Adsuar MS (2000) Int J Adhes Adhes 20:291CrossRefGoogle Scholar
  21. 21.
    Ioan S, Grigorescu G (2002) Eur Polym J 38:2295CrossRefGoogle Scholar
  22. 22.
    Tang YW, Labow RS, Santerre JP (2001) J Biomed Mater Res (2001) 56(4):516CrossRefGoogle Scholar
  23. 23.
    Takahara A, Tashita J, Kajiyama T et al (1985) J Biomed Mater Res 19:13CrossRefGoogle Scholar
  24. 24.
    Guan J, Fujimoto KL, Sacksa MS, Wagner WR (2005) Biomaterials 26:3961CrossRefGoogle Scholar
  25. 25.
    Riboldi SA, Sampaolesi M, Neuenschwander P, Cossu G, Mantero S (2005) Biomaterials 26:4606CrossRefGoogle Scholar
  26. 26.
    Grad S, Kupcsik L, Gorna K et al (2003) Biomaterials 24:5163CrossRefGoogle Scholar
  27. 27.
    Zhang J, Doll BA, Beckman EJ et al (2003) J Biomed Mater Res 67A:389CrossRefGoogle Scholar
  28. 28.
    Groot JH, Nijenhuis AJ, Bruin P et al (1990) Colloid Polym Sci 268:1073CrossRefGoogle Scholar
  29. 29.
    Wojnar L, Kurzydłowski KJ, Szala J (2002) Praktyka analizy obrazu Polskie Towarzystwo Steorologiczne, KrakówGoogle Scholar
  30. 30.
    Ho ST, Hutmacher DW (2006) Biomaterials 27:1362CrossRefGoogle Scholar
  31. 31.
    Hou Q, Grijpma DW, Feijen J (2003) Biomaterials 24:1937–1947CrossRefGoogle Scholar
  32. 32.
    Heijkants RGJC, van Tienen TG, de Groot JH et al (2006) J Mater Sci 41:2423. doi: CrossRefGoogle Scholar
  33. 33.
    Lee HK, Kimb JY, Kimb YD, Shinb JY, Kimb SC (2001) Polymer 42:3893CrossRefGoogle Scholar
  34. 34.
    Nam YS, Park TG (1999) Biomaterials 20:1783CrossRefGoogle Scholar
  35. 35.
    Hacker M, Ringhofer M, Appel B et al (2007) Biomaterials 28:3497CrossRefGoogle Scholar
  36. 36.
    Reignier J, Huneault MA (2006) Polymer 47:4703CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Monika Bil
    • 1
    Email author
  • Joanna Ryszkowska
    • 1
  • Krzysztof J. Kurzydłowski
    • 1
  1. 1.Warsaw University of Technology, Faculty of Materials Science and EngineeringWarsawPoland

Personalised recommendations