Advertisement

Journal of Materials Science

, Volume 43, Issue 22, pp 7250–7253 | Cite as

Synthesis of nanosized Zn2PtO4

  • Per Kjellin
  • Anders E. C. Palmqvist
Letter

Platinum and platinum compounds are used in numerous catalysis applications. In the fuel cell field, platinum is the main choice of catalyst material. Platinum forms a significant cost of the fuel cell system, and lots of research effort strives to decrease the platinum amount while preserving the efficiency of the catalyst material. This can be achieved in a number of ways, such as decreasing the particle size of the platinum particles, or by using more efficient platinum alloys. However, recent studies have shown that the platinum catalyst is subject to degradation in the relatively harsh fuel cell environment [1], and smaller particles become more sensitive to degradation due to their higher specific surface area. Platinum alloys, such as Pt–Ru, have shown to be more efficient catalysts, and to be less sensitive to catalyst poisoning, compared to pure platinum [2, 3]. Catalyst poisoning can occur in for example direct methanol fuel cells (DMFC) when methanol leaks through the...

Keywords

Oxygen Reduction Reaction Direct Methanol Fuel Cell PtCl4 Average Crystal Size Catalyst Poisoning 

Notes

Acknowledgements

The authors thank MISTRA (The Swedish Foundation for Strategic Environmental Research)/Jungner Centre for financial support, via the programme “Fuel Cells in a Sustainable Society”. A.E.C. Palmqvist thanks the Swedish Research Council for a Senior Researcher grant, and support from the Competence Centre for Catalysis, which is funded by the Swedish Energy Agency and the member companies: AB Volvo, Volvo Car Corporation, Scania CV AB, GM Powertrain Sweden AB, Haldor Topsøe A/S, Perstorp Specialty Chemicals AB and The Swedish Space Agency.

References

  1. 1.
    Ferreira PJ, la O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) J Electrochem Soc 152:A2256CrossRefGoogle Scholar
  2. 2.
    Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) J Phys Chem B 106:4181CrossRefGoogle Scholar
  3. 3.
    Colón-Mercado HR, Popov BN (2006) J Power Sources 155:253CrossRefGoogle Scholar
  4. 4.
    Du CY, Zhao TS, Yang WW (2007) Electrochim Acta 52:5266CrossRefGoogle Scholar
  5. 5.
    Jusys Z, Schmidt TJ, Dubau L, Lasch K, Jörissen L, Garche J, Behm RJ (2002) J Power Sources 105:297CrossRefGoogle Scholar
  6. 6.
    Lempola N, Steiger B, Scherer GG, Wokaun A (2003) In: Proceedings of the 2nd European PEFC forum, vol 1, p 407Google Scholar
  7. 7.
    Beck NK, Steiger B, Scherer GG, Wokaun A (2005) Fuel Cells 6:26CrossRefGoogle Scholar
  8. 8.
    Kjellin P, Ekström H, Lindbergh G, Palmqvist A (2007) J Power Sources 168:346CrossRefGoogle Scholar
  9. 9.
    Claridge JB, Layland RC, Henley WH, Loye H-Cz (1999) Chem Mater 11:1376CrossRefGoogle Scholar
  10. 10.
    Nguyen TN, Loye H-Cz (1997) J Cryst Growth 172:183CrossRefGoogle Scholar
  11. 11.
    Turrillasa X, Laviron C, Vincent H, Pannetier J, Jouberta JC (1987) J Solid State Chem 67:297CrossRefGoogle Scholar
  12. 12.
    Hansen T, Müller-Buschbaum H (1994) Z Anorg Allg Chem 620:1471CrossRefGoogle Scholar
  13. 13.
    Muller O, Roy R (1969) Mater Res Bull 4:39CrossRefGoogle Scholar
  14. 14.
    Shannon RD, Rogers DB, Prewitt CT (1971) Inorg Chem 10:713CrossRefGoogle Scholar
  15. 15.
    Tanaka M, Hasegawa M, Takei H (1997) J Cryst Growth 173:440CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Promimic AB, Stena Center 1BGöteborgSweden
  2. 2.Department of Applied Surface Chemistry, Chemical and Biological EngineeringChalmers University of TechnologyGöteborgSweden
  3. 3.Competence Centre for CatalysisChalmers University of TechnologyGöteborgSweden

Personalised recommendations