Journal of Materials Science

, Volume 44, Issue 6, pp 1551–1559 | Cite as

Radius ratio effect on high-strain rate properties of syntactic foam composites

  • E. WoldesenbetEmail author
  • S. Peter
Syntactic and Composite Foams


The high-strain rate compressive properties of syntactic foams are characterized in this study. This study is performed using a pulse-shaped Split-Hopkinson Pressure Bar technique. Nine different types of syntactic foams are fabricated with the same matrix resin system but three different size microballoons and three different microballoon volume fractions. The microballoons have the same outer radius of 40 μm, but different internal radii leading to a difference in their densities. The volume fractions of the microballoons in the syntactic foams are maintained at 0.1, 0.3, and 0.6. Analysis is carried out on the effect of the microballoon radius ratio at each volume fraction on the high-strain rate properties. This approach is helpful in separating and categorizing the contribution of matrix and microballoons to the dynamic compressive properties of syntactic foams. The results at high-strain rates are compared to quasi-static strain rate compressive properties of the same material. The results show that there is little or no significant change in both compressive strength and modulus of syntactic foams at all radius ratios when tested at strain rates of 400–500/s compared to quasi-static rates. However, higher dynamic strength and stiffness values are obtained consistently at all radius ratios when tested at 800–1000/s compared to quasi-static values. It is observed that the radius ratio does not affect the syntactic foam properties significantly when tested at the same high-strain rate and volume fraction. Scanning electron microscopy is carried out to understand the fracture modes of the syntactic foams.


Foam Molybdenum Disulfide Peak Stress Strain Rate Sensitivity Dynamic Modulus 



This work was supported by DOW Chemical Company, 3M, National Science Foundation (Grant No. HRD-0734845).


  1. 1.
    Gibson LJ, Ashby MF (1997) Cellular solids structures and properties. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  2. 2.
    Ashida K (1995) Handbook of plastic foams: types, properties manufacture and applications. Noyes Publications, NJGoogle Scholar
  3. 3.
    Karthikeyan CS, Kishor E, Sankaran (2001) J Reinf Plast Compos 20(11):982CrossRefGoogle Scholar
  4. 4.
    Gupta N, Woldesenbet E (2003) Compos Struct 61(4):311CrossRefGoogle Scholar
  5. 5.
    Noor AK, Burton WS, Bert CW (1996) Appl Mech Rev 49(3):155CrossRefGoogle Scholar
  6. 6.
    Gupta N, Kishore E, Woldesenbet E (2001) J Mater Sci 36(18):4485CrossRefGoogle Scholar
  7. 7.
    Corigliana A, Rizzi E, Papa E (2000) Compos Sci Technol 60:2169CrossRefGoogle Scholar
  8. 8.
    Narkis M, Puterman M, Kenig S (1980) J Cell Plast 16:326CrossRefGoogle Scholar
  9. 9.
    Gupta N, Woldesenbet E (2004) J Cell Plast 40:461CrossRefGoogle Scholar
  10. 10.
    Karthikeyan CS, Sankaran S, Jagdish Kumar MN et al (2001) J Appl Polym Sci 81:405CrossRefGoogle Scholar
  11. 11.
    Rizzi E, Papa E, Corignlina A (2000) Int J Solids Struct 37:5773CrossRefGoogle Scholar
  12. 12.
    D’Almeida JRM (1999) Compos Sci Technol 59:2087CrossRefGoogle Scholar
  13. 13.
    Bunn R, Mottram JT (1993) Composites 24(7):565CrossRefGoogle Scholar
  14. 14.
    Progelhof RC (1986) in Proceedings of instrumented impact testing of plastics and composite materials, Houston, March 1986. ASTM, p 105Google Scholar
  15. 15.
    Sounik DF, Gansen P, Clemons JL et al (1997) J Mater Manuf 106(5):211Google Scholar
  16. 16.
    Hall W, Guden M, Yu CJ (2000) Scr Mater 34:515CrossRefGoogle Scholar
  17. 17.
    Dannemann A, Lankford J (2000) Mater Sci Eng A 293:157CrossRefGoogle Scholar
  18. 18.
    Mukai T, Kanahashi H, Miyoshi T et al (1999) Scr Mater 40(8):921CrossRefGoogle Scholar
  19. 19.
    Deshpande VS, Fleck NA (2000) Int J Impact Eng 24(3):277CrossRefGoogle Scholar
  20. 20.
    Chen W, Lu F, Winfree N (2002) Exp Mech 42(1):62CrossRefGoogle Scholar
  21. 21.
    Rinde A, Hoge KG (1971) J Appl Polym Sci 15:1377CrossRefGoogle Scholar
  22. 22.
    Baker WE, Togami TC, Weider JC (1998) Int J Impact Eng 21(3):149CrossRefGoogle Scholar
  23. 23.
    Zhao H, Gary G (1998) Int J Impact Eng 21(10):827CrossRefGoogle Scholar
  24. 24.
    Song B, Chen W, Frew DJ (2004) J Compos Mater 38:915CrossRefGoogle Scholar
  25. 25.
    Woldesenbet E, Gupta N, Jadhav A (2005) J Mater Sci 40:4009CrossRefGoogle Scholar
  26. 26.
    Gupta N, Woldesenbet, Kishore E (2002) J Mater Sci 37(15):3199CrossRefGoogle Scholar
  27. 27.
    Kolsky H (1949) Proc Phys Soc B 62:676CrossRefGoogle Scholar
  28. 28.
    Jadhav A, Woldesenbet E, Pang SS (2003) Composites Part B 34(4):339CrossRefGoogle Scholar
  29. 29.
    Woldesenbet E, Gupta N, Jadhav A (2005) J Mater Sci 40:4009CrossRefGoogle Scholar
  30. 30.
    Woldesenbet E, Vinson JR (1999) AIAA J 37(9):1102CrossRefGoogle Scholar
  31. 31.
    Woldesenbet E, Vinson JR (2001) J Compos Mater 35(6):509CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentLouisiana State UniversityBaton RougeUSA

Personalised recommendations