Journal of Materials Science

, Volume 43, Issue 22, pp 7157–7164 | Cite as

Effect of Ce and La on microstructure and properties of a 6xxx series type aluminum alloy

  • Mehdi HosseinifarEmail author
  • Dmitri V. Malakhov


The increase in iron content in secondary sources of aluminum has led to an increase in the amount of Fe-bearing intermetallic phases in Al alloys. One of these intermetallics, β-AlFeSi, which is seen as the dominant phase in 6xxx series alloys, reduces bendability of wrought alloys, which in turn, limits their usage in the automotive industry. It is known that small additions of Sr prevent the formation of the β phase and facilitate the precipitation of a less detrimental intermetallic, α-AlFeSi, in as-cast alloys. It is worth investigating whether other elements cause a similar effect. Cerium and lanthanum as the least expensive representatives of rare-earth metals are tried as such elements. It is found that in alloys containing 0.1–0.2 wt.% of lanthanum, the fraction of β particles is pronouncedly less than that in the reference alloy. In addition to this advantage, much smaller grains are seen in the alloy with 0.2 wt.% La. Despite similarities between La and Ce, the latter metal neither modifies the microstructure nor noticeably affects the grain size. Moderate thermo-mechanical processing nullifies the beneficial effect of small La additions resulting in no improvement in the bendability of the alloy.


Intermetallic Particle Mischmetal AlFeSi Glow Discharge Optical Emission Spectroscopy Chinese Script 



The authors gratefully acknowledge the financial support of the Auto 21 research initiative. The in kind support of Novelis Inc. is also greatly appreciated.


  1. 1.
    Spencer K, Corbin SF, Lloyd DJ (2002) Mater Sci Eng A 325:394CrossRefGoogle Scholar
  2. 2.
    Lievers WB, Pilkey AK, Lloyd DJ (2003) Mater Sci Eng A 361:312CrossRefGoogle Scholar
  3. 3.
    Musulin I, Celliers OC (1990) In: Light metals 1990 proceedings of the 119th TMS annual meeting, pp 951–954Google Scholar
  4. 4.
    Clode MP, Sheppard T (1990) Mater Sci Technol 6:755CrossRefGoogle Scholar
  5. 5.
    Onurlu S, Tekin A (1994) J Mater Sci 29:1652CrossRefGoogle Scholar
  6. 6.
    Zajac S, Hutchinson B, Johansson A, Gullman LO (1994) Mater Sci Technol 10:323CrossRefGoogle Scholar
  7. 7.
    Birol Y (2004) J Mater Process Tech 148:250CrossRefGoogle Scholar
  8. 8.
    Couto KBS, Claves SR, Van Geertruyden WH, Misiolek WZ, Goncalves M (2005) Mater Sci Tech 21:263CrossRefGoogle Scholar
  9. 9.
    Shabestari SG, Gruzleski JE (1995) Trans AFS 26:285Google Scholar
  10. 10.
    Mulazimoglu MH, Zaluska A, Gruzleski JE, Paray F (1996) Metall Mater Trans 27A:929CrossRefGoogle Scholar
  11. 11.
    Paray F, Kulunk B, Gruzleski J (1996) Mater Sci Tech 12:315CrossRefGoogle Scholar
  12. 12.
    Samuel FH, Samuel AM, Doty HW, Valtierra S (2001) Metall Mater Trans 32A:2061CrossRefGoogle Scholar
  13. 13.
    Bakke P, Pettersen K, Westengen H (2003) JOM 55:46CrossRefGoogle Scholar
  14. 14.
    Pekguleryuz MO, Kaya AA (2003) Adv Eng Mater 5:866CrossRefGoogle Scholar
  15. 15.
    Xia Z, Chen Z, Shi A, Mu N, Sun N (2002) J Electron Mater 31:564CrossRefGoogle Scholar
  16. 16.
    Lawrence CM, Wu CML, Yu DQ, Law CMT, Wang L (2002) J Electron Mater 3:921Google Scholar
  17. 17.
    Morris DG, Chao J, Garcia Oca C, Munoz-Morris MA (2003) Mater Sci Eng A 339:232CrossRefGoogle Scholar
  18. 18.
    Salazar M, Perez R, Rosas G (2003) Mater Sci Forum 426–432:1837CrossRefGoogle Scholar
  19. 19.
    Fu H, Xiao Q, Li Y (2005) Mater Sci Eng A 395:281CrossRefGoogle Scholar
  20. 20.
    Cao Z, Sun D, Du W, Zheng Z (1990) Aluminum alloys: their physical and mechanical properties. In: Proceedings of 2nd international conference, pp 312–314Google Scholar
  21. 21.
    Ravi M, Pillai UTS, Pai BC, Damodaran AD, Dwarakadasa ES (2002) Metall Mater Trans 33A:391CrossRefGoogle Scholar
  22. 22.
    Bryant JD (1999) Metall Mater Trans 30A:2006Google Scholar
  23. 23.
    Abu Khatwa MK, Malakhov DV (2006) CALPHAD 30:159CrossRefGoogle Scholar
  24. 24.
    Datsko J, Yang CT (1960) J Eng Ind 82:309CrossRefGoogle Scholar
  25. 25.
    Liu Z, Chang YA (1999) Metall Mater Trans 30A:1081CrossRefGoogle Scholar
  26. 26.
    Hansen V, Hauback B, Sundberg M, Rumming C, Gjùnnes J (1998) Acta Crystallogr B 54:351CrossRefGoogle Scholar
  27. 27.
    Ashtari P, Tezuka H, Sato T (2004) Scr Mater 51:43CrossRefGoogle Scholar
  28. 28.
    Ashtari P, Tezuka H, Sato T (2005) Scr Mater 53:937CrossRefGoogle Scholar
  29. 29.
    Backerud L, Krol E, Tamminen J (1986) Solidification characteristics of aluminum alloys vol 1: wrought alloys. SkanAluminum, SwedenGoogle Scholar
  30. 30.
    Mondolfo LF (1978) Manganese in aluminium alloys. Page Bros. (Norwich) Ltd., EnglandGoogle Scholar
  31. 31.
    Barlock J, Mondolfo L (1975) Z Metallkd 66:605Google Scholar
  32. 32.
    Zakharov AM, Gul’din IT, Arnol’d AA, Matsenko YuA (1989) Russ Metall 4:209Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringMcMaster UniversityHamiltonCanada

Personalised recommendations