Advertisement

Journal of Materials Science

, Volume 44, Issue 9, pp 2310–2319 | Cite as

Mechanical, corrosion, and sliding wear behavior of intermetallics reinforced austenitic stainless steel composites

  • S. Balaji
  • A. Upadhyaya
Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday

Abstract

The present work investigates the effect of supersolidus sintering and intermetallics (Ni3Al, Fe3Al) additions on the densification, mechanical, tribological, and electrochemical behavior of sintered austenitic (316L) stainless steels. The performances of the supersolidus liquid phase sintered (SLPS) compacts are compared with the conventional solid-state sintered (SSS) compacts of similar compositions. Correspondingly, the sintering was carried out at two different temperatures 1200 °C (SSS) and 1400 °C (SLPS). Supersolidus sintering results in significant improvement in densification, wear resistance, corrosion resistance, strength, and ductility in both straight as well as aluminide added composites.

Keywords

Sinter Temperature Ni3Al Fe3Al Yttrium Aluminum Garnet 316L Stainless Steel 

References

  1. 1.
    Shankar J, Upadhyaya A, Balasubramaniam R (2004) Corr Sci 46:487CrossRefGoogle Scholar
  2. 2.
    Jain J, Kar AM, Upadhyaya A (2004) Mater Lett 58:2037CrossRefGoogle Scholar
  3. 3.
    German RM (1985) Liquid phase sintering. Plenum Press, New YorkCrossRefGoogle Scholar
  4. 4.
    Cambal L, Lund JA (1972) Int J Powder Metall 8(3):131Google Scholar
  5. 5.
    German RM (1997) Metall Mater Trans A 28A:1553CrossRefGoogle Scholar
  6. 6.
    Pagounis E, Lindroos VK (1998) Mater Sci Eng A 246:221CrossRefGoogle Scholar
  7. 7.
    Datta P, Upadhyaya GS (2003) Sci Sintering 32:109Google Scholar
  8. 8.
    Velasco F, Anton N, Torralba JM, Ruiz-Prieto JM (1997) Mater Sci Technol 13:847CrossRefGoogle Scholar
  9. 9.
    Vardavoulias M, Jeandin M, Velasco F, Torralba JM (1996) Tribol Int 29:506CrossRefGoogle Scholar
  10. 10.
    Akhtar F, Guo SJ (2008) Mater Char 59:84CrossRefGoogle Scholar
  11. 11.
    Tjong SC, Lau KC (1999) Mater Lett 41:153CrossRefGoogle Scholar
  12. 12.
    Tjong SC, Lau KC (2000) Comp Sci Tech 60:1141CrossRefGoogle Scholar
  13. 13.
    Shankar J, Upadhyaya A, Balasubramaniam R (2002) Advances in powder metallurgy and particulate materials, vol 13. Princeton, p 313Google Scholar
  14. 14.
    Balaji S, Upadhyaya A (2007) Mater Chem Phys 101:310CrossRefGoogle Scholar
  15. 15.
    Velasco F, Lima WM, Anton N, Abenojar J, Torralba JM (2003) Tribol Int 36:547CrossRefGoogle Scholar
  16. 16.
    Abenojar J, Velasco F, Bautista A, Campos M, Bas JA, Torralba JM (2003) Compos Sci Technol 63:69CrossRefGoogle Scholar
  17. 17.
    Abenojar J, Velasco F, Torralba JM, Bas JA, Calero JA (2002) Mater Sci Eng A 335:1CrossRefGoogle Scholar
  18. 18.
    Balaji S, Vijay P, Upadhyaya A (2007) Scripta Mater 56:1063CrossRefGoogle Scholar
  19. 19.
    Panda SS, Singh V, Upadhyaya A, Agrawal D (2006) Metall Mater Trans A 37A:2253CrossRefGoogle Scholar
  20. 20.
    Kameo K, Friedrich K, Bartolomé JF, Díaz M, Esteban SL, Moya JS (2003) J Eur Ceram Soc 23:2867CrossRefGoogle Scholar
  21. 21.
    Balasubramaniam R (2002) J Alloys Compd 330:506CrossRefGoogle Scholar
  22. 22.
    Sedriks AJ (1979) Corrosion of stainless steels, 1st edn. John Wiley & Sons, New York, NY, p 52Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials and Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia

Personalised recommendations