Advertisement

Journal of Materials Science

, Volume 43, Issue 22, pp 7179–7183 | Cite as

Structure evolution of bulk Zr60Cu20Pd10Al10 amorphous alloy during rolling deformation

  • P. N. Zhang
  • J. F. Li
  • Y. Hu
  • Y. H. Zhou
Article

Abstract

Bulk Zr60Cu20Pd10Al10 amorphous alloy was rolled at room temperature up to 96% reduction in thickness without fracture. The changes of microstructure and hardness during rolling deformation were investigated by X-ray diffraction, differential scanning calorimetry, high-resolution transmission electron microscopy, and microhardness measurement. It is revealed that the rolling deformation causes the quenched-in nuclei in the glass to grow slowly before a deformation degree of 90%. Substantial nanocrystallization occurs at higher deformation degree, where the softening induced by shear bands can even be compensated by the nanocrystallization.

Keywords

Shear Band Amorphous Alloy Select Area Electron Diffraction Pattern Thickness Reduction Inhomogeneous Deformation 

Notes

Acknowledgements

Financial support from the National Natural Science Foundation of China under Grant No. 50671066 is acknowledged. The authors are grateful to Mr. Jianyi Tang and Ms. Hui Xing for the TEM observation.

References

  1. 1.
    Suzuki K, Kataoka N, Inoue A, Makino A, Masumoto T (1990) Mater Trans JIM 31:743CrossRefGoogle Scholar
  2. 2.
    Yoshizawa Y, Oguma S, Yamaguchi K (1988) J Appl Phys 64:6044CrossRefGoogle Scholar
  3. 3.
    Murali P, Ramamurty U, Shenoy VB (2007) Phys Rev B 75:024203CrossRefGoogle Scholar
  4. 4.
    Schuh CA, Hufnagel TC, Ramamurty U (2007) Acta Mater 55:4067CrossRefGoogle Scholar
  5. 5.
    Jiang WH, Pinkerton FE, Atzmon M (2005) Acta Mater 53:3469CrossRefGoogle Scholar
  6. 6.
    Jana S, Bhowmick R, Kawamura Y, Chattopadhyay K, Ramamurty U (2004) Intermetallics 12:1097CrossRefGoogle Scholar
  7. 7.
    Spaepen F (1975) Acta Metall 23:615CrossRefGoogle Scholar
  8. 8.
    Li J, Wang ZL, Hufnagel TC (2002) Phys Rev B 65:144201CrossRefGoogle Scholar
  9. 9.
    Wright WJ, Hufnagel TC, Nix WD (2003) J Appl Phys 93:1432CrossRefGoogle Scholar
  10. 10.
    Inoue A (1999) Bulk amorphous alloys: practical characteristics and application. Trans Tech Publications, Zurich, p 136Google Scholar
  11. 11.
    Jiang WH, Pinkerton FE, Atzmon M (2003) Scr Mater 48:1195CrossRefGoogle Scholar
  12. 12.
    Kim JJ, Choi Y, Suresh S, Argon AS (2002) Science 295:654Google Scholar
  13. 13.
    Chen H, He Y, Shiflet GJ, Poom SJ (1994) Nature 367:541CrossRefGoogle Scholar
  14. 14.
    Cao QP, Li JF, Zhou YH, Horsewell A, Jiang JZ (2006) Acta Mater 54:4373CrossRefGoogle Scholar
  15. 15.
    Bhowmick R, Raghavan R, Chattopadhyay K, Ramamurty U (2006) Acta Mater 54:4221CrossRefGoogle Scholar
  16. 16.
    Krishananand KD, Cahn RW (1975) Scr Metall 9:1259CrossRefGoogle Scholar
  17. 17.
    Pampillo CA (1972) Scr Metall 6:915CrossRefGoogle Scholar
  18. 18.
    Donovan PE, Stobbs WM (1981) Acta Metall 29:1419CrossRefGoogle Scholar
  19. 19.
    Takeuchi A, Inoue A (2005) Mater Trans 46:2817CrossRefGoogle Scholar
  20. 20.
    Fan C, Inoue A (2000) Appl Phys Lett 77:46CrossRefGoogle Scholar
  21. 21.
    Inoue A, Fan C (1999) Nanostruct Mater 12:741CrossRefGoogle Scholar
  22. 22.
    Kim YH, Inoue A, Masumoto T (1991) Mater Trans JIM 32:331CrossRefGoogle Scholar
  23. 23.
    Sun WS, Quan MX (1996) Mater Lett 27:101CrossRefGoogle Scholar
  24. 24.
    Kim HS (2003) Scr Mater 48:43CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China

Personalised recommendations