Journal of Materials Science

, Volume 43, Issue 22, pp 7171–7178 | Cite as

The mechanical properties of model-compacted tablets

  • S. M. Goh
  • S. Alten
  • G. van Dalen
  • R. S. FarrEmail author
  • C. Gamonpilas
  • M. N. Charalambides


In this study, the compressive strength of tablets made with salt, starch and fat was investigated. The strength was found to increase with compaction pressure, up to a maximum value where further increase in the compaction pressure led to no increase in the strength. The maximum strength corresponded to the point where zero porosity was obtained during the compaction process. However, because of the elastic rebound of the tablets after ejection, the maximum strength corresponded to non-zero final tablet porosities which varied between the materials. For this reason, the use of the density occurring during the compaction process appeared to provide a more reliable comparison between the materials. A simple linear mixing rule did not hold in characterising the strength in the salt:starch:fat systems. However, two regimes were observed depending on the salt volume fraction. At low salt volume fractions, the effect of the salt was negligible. After a certain critical salt volume fraction, increasing the salt led to an increase in the strength. Finite element simulations based on X-ray microtomography images of the tablets suggested that in the first regime, the stresses due to the salt particles were localised but in the second regime, stress-bearing networks were formed between the salt particles.


Starch Compressive Strength Compaction Maximum Strength Compaction Process 


  1. 1.
    Baklouti S, Chartier T, Gaultb C et al (1998) J Eur Ceram Soc 19:1569CrossRefGoogle Scholar
  2. 2.
    Adolfsson A, Olsson H, Nystrom C (1997) Eur J Pharm Biopharm 44:243CrossRefGoogle Scholar
  3. 3.
    Kuppuswamy R, Anderson SR, Hoag SW et al (2001) Pharm Dev Technol 6:505CrossRefGoogle Scholar
  4. 4.
    Van Veen B, Van der Voort Maarschalk K, Bolhuis GK et al (2004) Powder Technol 139:156CrossRefGoogle Scholar
  5. 5.
    Sudduth RD (1995) J Mater Sci 30:4451CrossRefGoogle Scholar
  6. 6.
    Holman LE (1993) Int J Pharm 89:R17CrossRefGoogle Scholar
  7. 7.
    Baklouti S, Chartier T, Gault C et al (1997) J Eur Ceram Soc 18:323CrossRefGoogle Scholar
  8. 8.
    Van der Voort Maarschalk K, Vromans H, Groenendijk W et al (1997) Eur J Pharm Biopharm 44:253CrossRefGoogle Scholar
  9. 9.
    Holman LE, Leuenberger H (1988) Int J Pharm 46:35CrossRefGoogle Scholar
  10. 10.
    Nystrom C, Mazur J, Sjogren J (1982) Int J Pharm 10:209–218CrossRefGoogle Scholar
  11. 11.
    Roberts RJ, Rowe RC (1985) J Pharm Pharmacol 37:377CrossRefGoogle Scholar
  12. 12.
    Sinka IC, Cunningham JC, Zavaliangos A (2004) J Pharm Sci 93:2040CrossRefGoogle Scholar
  13. 13.
    Leuenberger H, Ineichen L (1997) Eur J Pharm Biopharm 44:269CrossRefGoogle Scholar
  14. 14.
    Martin CL, Bouvard D (2004) Int J Mech Sci 46:907CrossRefGoogle Scholar
  15. 15.
    Brandt J, Nilsson L (1998) Mech Cohes Friction Mater 3:181CrossRefGoogle Scholar
  16. 16.
    Cameron IM, Gethin DT (2001) Mater Sci Eng 9:289Google Scholar
  17. 17.
    Zavaliangos A (2003) Part Sci Technol 21:105CrossRefGoogle Scholar
  18. 18.
    Wu CY, Ruddy OM, Bentham AC et al (2005) Powder Technol 152:107CrossRefGoogle Scholar
  19. 19.
    Alderborn G, Nystron C (1996) Preface, in Pharmaceutical powder compaction technology. Marcel Dekker, New YorkGoogle Scholar
  20. 20.
    Busignies V, Leclerc B, Porion P et al (2006) Eur J Pharm Biopharm 64:51CrossRefGoogle Scholar
  21. 21.
    Azhdar B, Stenberg B, Kari L (2006) Polym Test 25:114CrossRefGoogle Scholar
  22. 22.
    van Dalen G, Nootenboom P, van Vliet LJ et al (2007) Image Anal Stereol 26:169CrossRefGoogle Scholar
  23. 23.
    Baumar JF, Coupelle P (1994) J Mater Sci Lett 13:93CrossRefGoogle Scholar
  24. 24.
    Van der K Voort Maarschalk, Zuurman K, Vromans H et al (1996) Int J Pharm 140:185CrossRefGoogle Scholar
  25. 25.
    Sun CC (2005) J Pharm Sci 94:2061CrossRefGoogle Scholar
  26. 26.
    Wang JC (1984) J Mater Sci 19:801CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. M. Goh
    • 1
  • S. Alten
    • 1
  • G. van Dalen
    • 1
  • R. S. Farr
    • 1
    Email author
  • C. Gamonpilas
    • 2
  • M. N. Charalambides
    • 2
  1. 1.Unilever Food and Health Research InstituteVlaardingenThe Netherlands
  2. 2.Department of Mechanical EngineeringImperial College LondonSouth Kensington, LondonUK

Personalised recommendations