Advertisement

Journal of Materials Science

, Volume 44, Issue 9, pp 2271–2275 | Cite as

Synthesis and characterization of cobalt–nickel alloy nanowires

  • S. TalapatraEmail author
  • X. Tang
  • M. Padi
  • T. Kim
  • R. Vajtai
  • G. V. S. Sastry
  • M. Shima
  • S. C. Deevi
  • P. M. Ajayan
Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday

Abstract

We report on the synthesis and magnetic characterization of ordered arrays of cobalt–nickel alloy nanowires. These alloy nanowires were electrodeposited into the pores of anodic alumina templates. The physical properties of the samples were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and vibrating sample magnetometer. We found that for the alloy nanowires the field at which the magnetization saturates increases with increasing Co fraction and the saturation field in the normal direction is smaller than the parallel direction, indicating easy magnetization direction normal to wire axis. Nanowires with different compositional ratio of cobalt and nickel showed a nonlinear dependence of coercivity as a function of cobalt concentration. These findings will help tailor magnetic nanoalloys with controlled properties for various applications, such as high density magnetic storage or nanoelectrode arrays.

Keywords

Nanowire Array Cobalt Concentration Wire Axis Alumina Template Easy Magnetization Direction 

Notes

Acknowledgements

PMA and RV acknowledge funding support from the RPI Nanoscale Science and Engineering Initiative of the National Science Foundation under NSF award numbers DMR-0117792 and DMR-0642573 on directed assembly of nanostructures and Philip Morris USA. The authors acknowledge Prof. G.W. Meng and Dr. Y.Y. Jung for helpful discussion. ST acknowledge financial support provided by SIUC ORDA through start-up funds.

References

  1. 1.
    Fert A, Piraux L (1999) J Magn Magn Mater 200:338. doi: https://doi.org/10.1016/S0304-8853(99)00375-3 CrossRefGoogle Scholar
  2. 2.
    Skomski R, Zeng H, Sellmyer DJ (2002) J Magn Magn Mater 249:175. doi: https://doi.org/10.1016/S0304-8853(02)00527-9 CrossRefGoogle Scholar
  3. 3.
    Allwood DA, Vernier N, Xiong G, Cooke MD, Atkinson D, Faulkner CC et al (2002) Appl Phys Lett 81:4005. doi: https://doi.org/10.1063/1.1523634 CrossRefGoogle Scholar
  4. 4.
    Prinz GA (1999) J Magn Magn Mater 200:57. doi: https://doi.org/10.1016/S0304-8853(99)00335-2 CrossRefGoogle Scholar
  5. 5.
    Nait Abdi A, Buchera JP (2003) Appl Phys Lett 82:430. doi: https://doi.org/10.1063/1.1539908 CrossRefGoogle Scholar
  6. 6.
    Peng Y, Shen T-H, Zhao XG, Ashworth B, Faunce CA, Liu YW (2003) Appl Phys Lett 83:362. doi: https://doi.org/10.1063/1.1590427 CrossRefGoogle Scholar
  7. 7.
    Saib A, Vanhoenacker-Janvier D, Huynen I, Encinas A, Piraux L, Ferain E et al (2003) Appl Phys Lett 83:2378. doi: https://doi.org/10.1063/1.1610798 CrossRefGoogle Scholar
  8. 8.
    Sunder RS, Deevi SC (2005) Int Mater Rev 50:1. doi: https://doi.org/10.1179/174328005X14302 CrossRefGoogle Scholar
  9. 9.
    Whitney TM, Jiang JS, Searson PC, Chien CL (1993) Science 261:1316. doi: https://doi.org/10.1126/science.261.5126.1316 CrossRefGoogle Scholar
  10. 10.
    Hulteen JC, Martin CR (1997) J Mater Chem 7:1075. doi: https://doi.org/10.1039/a700027h CrossRefGoogle Scholar
  11. 11.
    Schwarzacher W, Attenborough K, Michel A, Nabiyouni G, Meier JP (1997) J Magn Magn Mater 165:23. doi: https://doi.org/10.1016/S0304-8853(96)00465-9 CrossRefGoogle Scholar
  12. 12.
    Schonenberger C, van der Zande BMI, Fokkink LGJ, Henny M, Schmid C, Krulger M, Bachtold A, Huber R, Birk H, Staufer U (1997) J Phys Chem B 101:5497. doi: https://doi.org/10.1021/jp963938g CrossRefGoogle Scholar
  13. 13.
    Huczko A (2000) Appl Phys (Berl) A70:365CrossRefGoogle Scholar
  14. 14.
    He H, Tao NJ (2004) In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol X. American Scientific Publishers, San Diego, pp 1–18Google Scholar
  15. 15.
    Shankar KS, Kar S, Raychaudhuri AK, Subbannab GN (2004) Appl Phys Lett 84:993. doi: https://doi.org/10.1063/1.1646761 CrossRefGoogle Scholar
  16. 16.
    Zhu H, Yang S, Ni G, Yu D, Du Y (2001) Scripta Mater 44:2291. doi: https://doi.org/10.1016/S1359-6462(01)00761-8 CrossRefGoogle Scholar
  17. 17.
    Piercea JP, Plummer EW, Shen J (2002) Appl Phys Lett 81:1890. doi: https://doi.org/10.1063/1.1506185 CrossRefGoogle Scholar
  18. 18.
    Yin AJ, Li J, Jian W, Bennett AJ, Xu JM (2001) Appl Phys Lett 79:1039. doi: https://doi.org/10.1063/1.1389765 CrossRefGoogle Scholar
  19. 19.
    Garcia JM, Asenjo A, Velazquez J, Garcia D, Vazquez M, Aranda P et al (1999) J Appl Phys 85:5480. doi: https://doi.org/10.1063/1.369868 CrossRefGoogle Scholar
  20. 20.
    Nielsch K, Wehrspohn RB, Barthel J, Kirschner J, Gosele U, Fischer SF et al (2001) Appl Phys Lett 79:1360. doi: https://doi.org/10.1063/1.1399006 CrossRefGoogle Scholar
  21. 21.
    Nielsch K, Wehrspohn RB, Barthel J, Kirschner J, Fischer SF, Kronmuller H et al (2002) J Magn Magn Mater 249:234. doi: https://doi.org/10.1016/S0304-8853(02)00536-X CrossRefGoogle Scholar
  22. 22.
    Feldman LC, Mayer JW (1986) Fundamentals of surface and thin film analysis. Prentice Hall Inc., USAGoogle Scholar
  23. 23.
    Hnilicka M, Karmazin L (1974) Scripta Meter 8:1029. doi: https://doi.org/10.1016/0036-9748(74)90404-9 CrossRefGoogle Scholar
  24. 24.
    Tang XT, Wang GC, Shima M (2006) J Magn Magn Mater 309:188. doi: https://doi.org/10.1016/j.jmmm.2006.06.032 CrossRefGoogle Scholar
  25. 25.
    Zhan Q-F, Gao J-H, Liang Y-Q, Di N-L, Cheng Z-H (2005) PRB 72:024428. doi: https://doi.org/10.1103/PhysRevB.72.024428 CrossRefGoogle Scholar
  26. 26.
    Kim D, Park D-Y, Yoo BY, Sumodjo PTA, Myung NV (2003) Electrochim Acta 48:819. doi: https://doi.org/10.1016/S0013-4686(02)00773-9 CrossRefGoogle Scholar
  27. 27.
    Sapp SA, Mitchell DT, Martin CR (1999) Chem Mater 11:1183. doi: https://doi.org/10.1021/cm990001u CrossRefGoogle Scholar
  28. 28.
    Yu S, Li N, Wharton J, Martin CR (2003) Nano Lett 3:815. doi: https://doi.org/10.1021/nl0340576 CrossRefGoogle Scholar
  29. 29.
    Menon VP, Martin CR (1995) Anal Chem 67:1920. doi: https://doi.org/10.1021/ac00109a003 CrossRefGoogle Scholar
  30. 30.
    Forrer F, Schlottig F, Siegenthaler H, Textor M (2000) J Appl Electrochem 30:533. doi: https://doi.org/10.1023/A:1003941129560 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Talapatra
    • 1
    Email author
  • X. Tang
    • 2
  • M. Padi
    • 3
  • T. Kim
    • 3
  • R. Vajtai
    • 4
  • G. V. S. Sastry
    • 5
  • M. Shima
    • 3
    • 4
  • S. C. Deevi
    • 6
  • P. M. Ajayan
    • 3
    • 4
  1. 1.Department of PhysicsSouthern Illinois University CarbondaleCarbondaleUSA
  2. 2.Department of Physics, Applied Physics and AstronomyRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of Materials Science and EngineeringRensselaer Polytechnic InstituteTroyUSA
  4. 4.Rensselaer Nanotechnology Center, Rensselaer Polytechnic InstituteTroyUSA
  5. 5.Department of MetallurgyBanaras Hindu UniversityVaranasiIndia
  6. 6.RD&E Center Phillip MorrisRichmondUSA

Personalised recommendations