Advertisement

Journal of Materials Science

, Volume 44, Issue 2, pp 671–675 | Cite as

Combustion synthesis of Ga2O3 nanoparticles

  • V. Srihari
  • V. SridharanEmail author
  • H. K. Sahu
  • G. Raghavan
  • V. S. Sastry
  • C. S. Sundar
Article

Abstract

Nanophase of Ga2O3 has potentially important applications in photocatalysis. We report the synthesis of nanophase of the metastable γ- and stable β-Ga2O3 and demonstrate that it is possible to prepare a continuously varying mixture starting from the pure metastable γ- to the pure β-phase. This is achieved by employing a facile and reliable combustion route, using urea as a fuel. Typical grain sizes, as estimated from XRD studies, are about 3 nm. Given the importance of surface chemistry for potential applications, thermogravimetric coupled with mass spectrometry is used in conjunction with FTIR to elucidate the chemistry of the adsorbed surface layer. Studies on the γ-Ga2O3 phase indicate the occurrence of weight loss of 8.1% in multiple steps. Evolved gas analysis and FTIR studies show presence of physisorbed H2O molecules and chemisorbed –(OH) ions bonded to active surface states and accounts predominantly for the observed weight loss.

Keywords

Ga2O3 Weight Loss Step Urea Content Observe Weight Loss Weight Loss Event 

Notes

Acknowledgement

The authors thank Premila for recording FTIR spectrum and for useful discussion on the FTIR spectrum.

References

  1. 1.
    Diebold U (2003) Surf Sci Rep 48:53CrossRefGoogle Scholar
  2. 2.
    Seshadri H, Sridharan V, Sasidhar P, Sinha PK, Sastry VS, Sundar CS (2008) In: International conference on nano and microelectronics, 3–5 January 2008, Pondicherry Engineering College, Pondicherry, IndiaGoogle Scholar
  3. 3.
    Roy R, Hill VG, Osborn EF (1952) J Am Chem Soc 74:719CrossRefGoogle Scholar
  4. 4.
    Delgado MR, Arean CO (2003) Mater Lett 57:2292CrossRefGoogle Scholar
  5. 5.
    Areán CO, Bellan AL, Mentruit MP, Delgado MR, Palomino GT (2000) Micropor Mesopor Mater 40:35CrossRefGoogle Scholar
  6. 6.
    Ristic M, Popovi TS, Music S (2005) Mater Lett 59:1227CrossRefGoogle Scholar
  7. 7.
    Jain SR, Adiga KC, Pai Verneker VR (1981) Combust Flame 40:71CrossRefGoogle Scholar
  8. 8.
    Cullity BD (1977) Elements of X-ray diffraction. Addison-Wiley Publishing Company, Inc, ReadingGoogle Scholar
  9. 9.
    ICDD Card No. 060529Google Scholar
  10. 10.
    Li G, Li L, Boerio-Goates J, Woodfield BF (2005) J Am Chem Soc 127:8659CrossRefGoogle Scholar
  11. 11.
    Bezrodna T, Puchkovska G, Shimanovska V, Chashechnikova I, Khalyavka T, Baran J (2003) Appl Surf Sci 214:222CrossRefGoogle Scholar
  12. 12.
    Bezrodna T, Puchkovska G, Shymanovska V, Baran J, Ratajczak H (2004) J Mol Struct 700:175CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • V. Srihari
    • 1
  • V. Sridharan
    • 1
    Email author
  • H. K. Sahu
    • 1
  • G. Raghavan
    • 1
  • V. S. Sastry
    • 1
  • C. S. Sundar
    • 1
  1. 1.Materials Science DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations