Advertisement

Journal of Materials Science

, Volume 44, Issue 9, pp 2192–2197 | Cite as

Correlation between microstructure and phosphorus segregation in a hypereutectoid Wootz steel

  • M. R. BarnettEmail author
  • R. Balasubramaniam
  • Vinod Kumar
  • Colin MacRae
Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday

Abstract

The influence of bands rich in phosphorus on the microstructure of hypereutectoid Wootz steel implement is described. Electron probe micro-analysis is combined with optical microscopy. Phosphorus-rich bands are seen to correspond to regions of internal cracking, carbon depletion, and enhanced frequency of spheroidized cementite in place of pearlite. A rationale for the findings is presented in terms of the influence of phosphorus on the Fe–C phase diagram and on the rate of the eutectoid reaction.

Keywords

Austenite Cementite Pearlite Glow Discharge Optical Emission Spectrometry Phosphorus Segregation 

Notes

Acknowledgements

The authors acknowledge the kind contribution of Dr. S. Jaikishan, Reader in History, SNLSA Degree College, Dharmapuri, Karimnagar District, for providing the sample used in this study. The financial support extended to V.K. for his stay at Deakin University by Deakin University is appreciated.

References

  1. 1.
    Smith CS (1965) A history of metallography—the development of ideas on the structure of metals before 1890. The University of Chicago Press, ChicagoGoogle Scholar
  2. 2.
    Srinivasan S, Ranganathan S (2004) India’s legendary Wootz steel: an advanced material of the ancient world. Tata Steel, JamshedpurGoogle Scholar
  3. 3.
    Wadsworth J, Sherby OD (1980) Prog Mater Sci 25:36. doi: https://doi.org/10.1016/0079-6425(80)90014-6 CrossRefGoogle Scholar
  4. 4.
    Verhoeven JD, Pendray AH, Dauksch WE (1998) JOM 50(9):58. doi: https://doi.org/10.1007/s11837-998-0419-y CrossRefGoogle Scholar
  5. 5.
    Verhoeven JD (2002) Steel Res 73:356CrossRefGoogle Scholar
  6. 6.
    Balasbramaniam R (2007) Indian J Hist Sci 42:493Google Scholar
  7. 7.
    Balasbramaniam R (2007) Indian J Hist Sci 42:523Google Scholar
  8. 8.
    Zhang SL, Suna XJ, Donga H (2006) Mater Sci Eng A 432:324. doi: https://doi.org/10.1016/j.msea.2006.06.057 CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Taleff EM, Bramfitt BL, Syn CK, Lesuer DR, Wadsworth J, Sherby OD (2001) Mater Charact 46:19. doi: https://doi.org/10.1016/S1044-5803(00)00087-5 CrossRefGoogle Scholar
  11. 11.
    Verhoeven JD, Pendray AH (2001) Mater Charact 47:79, 423CrossRefGoogle Scholar
  12. 12.
    Wadsworth J, Sherby OD (2001) Mater Charact 47:163. doi: https://doi.org/10.1016/S1044-5803(01)00184-X CrossRefGoogle Scholar
  13. 13.
    Barnett MR, Balasubramaniam R (2007) Indian J Hist Sci 42:633Google Scholar
  14. 14.
    Barnett MR, Sullivan A, Balasubramaniam R (2008) Mater Charact (accepted)Google Scholar
  15. 15.
    Bronson B (1986) Archeom 1:13Google Scholar
  16. 16.
    Heath JM (1839) J R Asiat Soc 5:390CrossRefGoogle Scholar
  17. 17.
    Buchanan FA (1807) Journey from Madras, through the countries of Mysore, Canara and Malabar. East India Company, LondonGoogle Scholar
  18. 18.
    Jatczak JT, Girardi DJ, Rowland ES (1956) Trans ASM 49:279Google Scholar
  19. 19.
    Bastien PG (1957) J Iron Steel Inst 193:281Google Scholar
  20. 20.
    Grange RA (1971) Metall Trans 2:417. doi: https://doi.org/10.1007/BF02663328 CrossRefGoogle Scholar
  21. 21.
    Kirkaldy JS, von Destinon-Forstmann J, Brigham RJ (1962) Can Metall Quart 1:59CrossRefGoogle Scholar
  22. 22.
    Kumar V, Barnett MR, Balasubramaniam R, Jaikishan S (2007) Indian J Hist Sci 42:609Google Scholar
  23. 23.
    Jaikishan S, Balasbramaniam R (2007) Indian J Hist Sci 42:461Google Scholar
  24. 24.
    Voysey HW (1832) J Asiat Soc Bengal I:245; II:402Google Scholar
  25. 25.
    Verhoeven JD (1990) Mater Charact 25:221. doi: https://doi.org/10.1016/1044-5803(90)90012-9 CrossRefGoogle Scholar
  26. 26.
    Verhoeven JD, Jones LL (1987) Metallography 20:153. doi: https://doi.org/10.1016/0026-0800(87)90027-9 CrossRefGoogle Scholar
  27. 27.
    Vogel R (1929) Arch Eishenhüt 5:369Google Scholar
  28. 28.
    Bramley A, Haywood FW, Coopers AT, Watts JT (1935) Trans Faraday Soc 31:707. doi: https://doi.org/10.1039/tf9353100707 CrossRefGoogle Scholar
  29. 29.
    Verhoeven JD, Gibson ED (1998) Metall Mater Trans A 29:1181. doi: https://doi.org/10.1007/s11661-998-0245-4 CrossRefGoogle Scholar
  30. 30.
    Tsuzaki K, Tanaka K, Maki T, Tamura I (1989) ISIJ Int 75:128Google Scholar
  31. 31.
    Hyde RS, Krauss G, Matlock DK (1994) Metall Mater Trans A 25:1229. doi: https://doi.org/10.1007/BF02652297 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. R. Barnett
    • 1
    Email author
  • R. Balasubramaniam
    • 2
  • Vinod Kumar
    • 2
  • Colin MacRae
    • 3
  1. 1.Centre for Material and Fibre InnovationDeakin UniversityGeelongAustralia
  2. 2.Department of Materials and Metallurgical EngineeringIndian Institute of TechnologyKanpurIndia
  3. 3.Microbeam Laboratory, CSIRO MineralsClaytonAustralia

Personalised recommendations