Advertisement

Journal of Materials Science

, Volume 43, Issue 22, pp 6999–7012 | Cite as

Review: degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state

  • Bruno Fayolle
  • Emmanuel Richaud
  • Xavier Colin
  • Jacques Verdu
Review

Abstract

The literature dealing with degradation-induced embrittlement mechanisms in semi-crystalline polymers having their amorphous phase in rubbery state is reviewed. It is first demonstrated that the decrease of molar mass resulting from a quasi-homogeneous chain scission process is responsible for embrittlement. The main specificity of the polymer family under study is that embrittlement occurs at a very low conversion of the degradation process, while the entanglement network in the amorphous phase is slightly damaged. In these polymers, chain scission induces chemicrystallization. The analyses of available data on this process show that it is characterized by a relatively high yield: about one half entanglement strands integrate the crystalline phase after one chain scission. A simple relationship expressing the chemicrystallization yield for a given polymer structure is proposed. Chain scission and chemicrystallization can lead to embrittlement through two possible causal chains: (1) chain scission → molar mass decrease → chemicrystallization → decrease of the interlamellar spacing → embrittlement. (2) Chain scission → molar mass decrease → chemicrystallization → decrease of the tie-macromolecule concentration → embrittlement. At this state of our knowledge, both causal chains are almost undistinguishable.

Keywords

Molar Mass HDPE Chain Scission Interlamellar Spacing Brittle Transition 

References

  1. 1.
    Fayolle B, Audouin L, Verdu J (2000) Polym Degrad Stab 70:333. doi: https://doi.org/10.1016/S0141-3910(00)00108-7 CrossRefGoogle Scholar
  2. 2.
    Brown N, Lu X, Huang YL, Quian R (1991) Macromol Chem Macromol Symp 41:55CrossRefGoogle Scholar
  3. 3.
    Kausch HH, Heymans N, Plummer CF, Decroly P (2001) Matériaux polymères, propriétés Mécaniques et Physiques. Presses Polytechniques et Universitaires Romandes, LausanneGoogle Scholar
  4. 4.
    Michler GH, Balta Calleja FJ (eds) (2005) Mechanical properties of polymer based on nanostructure and morphology, chap. 5.7. Taylor and FrancisGoogle Scholar
  5. 5.
    Khelidj N, Colin X, Audouin L, Verdu J, Monchy-Leroy C, Prunier V (2006) Polym Degrad Stab 91:1593. doi: https://doi.org/10.1016/j.polymdegradstab.2005.09.011 CrossRefGoogle Scholar
  6. 6.
    Richaud E, Farcas F, Bartoloméo P, Fayolle B, Audouin L, Verdu J (2006) Polym Degrad Stab 91:398. doi: https://doi.org/10.1016/j.polymdegradstab.2005.04.043 CrossRefGoogle Scholar
  7. 7.
    Richaud E, Farcas F, Fayolle B, Audouin L, Verdu J (2008) J Appl Polym Sci 110:3313CrossRefGoogle Scholar
  8. 8.
    Griffith AA (1920) Philos Trans R Soc Lond A 221:163CrossRefGoogle Scholar
  9. 9.
    Celina M, George GA, Lacey DJ, Billingham NC (1995) Polym Degrad Stab 47:311. doi: https://doi.org/10.1016/0141-3910(94)00134-T CrossRefGoogle Scholar
  10. 10.
    Richters P (1970) Macromolecules 3:262. doi: https://doi.org/10.1021/ma60014a027 CrossRefGoogle Scholar
  11. 11.
    Fayolle B, Audouin L, George GA, Verdu J (2002) Polym Degrad Stab 77:515. doi: https://doi.org/10.1016/S0141-3910(02)00110-6 CrossRefGoogle Scholar
  12. 12.
    Zhang XC, Cameron RE (1999) J Appl Polym Sci 74:2234. doi:10.1002/(SICI)1097-4628(19991128)74:9<2234::AID-APP12>3.0.CO;2-SCrossRefGoogle Scholar
  13. 13.
    Brambilla L, Consolati G, Gallo R, Quasso F, Severini F (2003) Polymer 44:1041. doi: https://doi.org/10.1016/S0032-3861(02)00904-7 CrossRefGoogle Scholar
  14. 14.
    Girois S, Audouin L, Verdu J, Delprat P, Marot G (1996) Polym Degrad Stab 51:125. doi: https://doi.org/10.1016/0141-3910(95)00166-2 CrossRefGoogle Scholar
  15. 15.
    Severini F, Gallo R, Ipsale S (1988) Polym Degrad Stab 22:53. doi: https://doi.org/10.1016/0141-3910(88)90056-0 CrossRefGoogle Scholar
  16. 16.
    Fayolle B, Audouin L, Verdu J (2002) Polym Degrad Stab 75:123. doi: https://doi.org/10.1016/S0141-3910(01)00211-7 CrossRefGoogle Scholar
  17. 17.
    Rapoport NYa, Shibriaeva LC, Zaikov VE, Iring M, Fodor ZS, Tüdós F (1985) Polym Degrad Stab 12:191. doi: https://doi.org/10.1016/0141-3910(85)90088-6 CrossRefGoogle Scholar
  18. 18.
    Yakimets-Pilot I (2004) PhD thesis, UTC, Compiegne, France, p 121Google Scholar
  19. 19.
    Gensler R (1998) PhD thesis, EPFL, Lausanne, Switzerland, Nr 1863Google Scholar
  20. 20.
    Kagiya T, Nishimoto S, Watanabe Y, Kato M (1985) Polym Degrad Stab 12:261. doi: https://doi.org/10.1016/0141-3910(85)90094-1 CrossRefGoogle Scholar
  21. 21.
    Viebke J, Elble E, Gedde UW (1994) Polym Eng Sci 36:458CrossRefGoogle Scholar
  22. 22.
    Horgh PL, Klemchuck PP (1984) Polym Degrad Stab 8:235Google Scholar
  23. 23.
    Iring M, Tüdós F, Fodor ZS, Kelen T (1980) Polym Degrad Stab 2:143. doi: https://doi.org/10.1016/0141-3910(80)90036-1 CrossRefGoogle Scholar
  24. 24.
    Mendes LC, Rufino ES, de Paula FOC, Torres AC Jr (2003) Polym Degrad Stab 79:371. doi: https://doi.org/10.1016/S0141-3910(02)00337-3 CrossRefGoogle Scholar
  25. 25.
    Suarez JCM, Mano EB, Pereira RA (2000) Polym Degrad Stab 69:217. doi: https://doi.org/10.1016/S0141-3910(00)00065-3 CrossRefGoogle Scholar
  26. 26.
    Fayolle B, Colin X, Audouin L, Verdu J (2007) Polym Degrad Stab 92:231. doi: https://doi.org/10.1016/j.polymdegradstab.2006.11.012 CrossRefGoogle Scholar
  27. 27.
    Fayolle B, Verdu J, Bastard M, Piccoz D (2008) J Appl Polym Sci 107:1783. doi: https://doi.org/10.1002/app.26648 CrossRefGoogle Scholar
  28. 28.
    Sugimoto M, Ishikawa M, Hatada K (1995) Polymer 36:3675. doi: https://doi.org/10.1016/0032-3861(95)93769-I CrossRefGoogle Scholar
  29. 29.
    Zweifel H (2001) In: Zweifel H (ed) Plastic additives hanbook, 5th edn. Hanser, p 22Google Scholar
  30. 30.
    Fayolle B, Tcharkhtchi A, Verdu J (2004) Polym Test 23:939. doi: https://doi.org/10.1016/j.polymertesting.2004.04.013 CrossRefGoogle Scholar
  31. 31.
    Severini F, Gallo R, Ipsale S (1988) Polym Degrad Stab 22:185. doi: https://doi.org/10.1016/0141-3910(88)90041-9 CrossRefGoogle Scholar
  32. 32.
    Gardner RJ, Martin JB (1977) SPE ANTEC Techn Papers 24:328Google Scholar
  33. 33.
    Greco R, Ragosta G (1987) Plastics Rubber Process Appl 7:163Google Scholar
  34. 34.
    Wu S (1989) J Polym Sci B Polym Phys 27:723. doi: https://doi.org/10.1002/polb.1989.090270401 CrossRefGoogle Scholar
  35. 35.
    Van Krevelen DW (1990) Properties of polymers, 3rd edn. Elsevier, Amsterdam, p 465Google Scholar
  36. 36.
    Plummer CJG (2005) In: Michler GH, Balta-Calleja FJ (eds) Mechanical properties of polymers based on nanostructure and morphology, chap. 6. Taylor and Francis, pp 215–244Google Scholar
  37. 37.
    Tervoort TA, Visjager J, Smith P (2005) Macromolecules 35:8467. doi: https://doi.org/10.1021/ma020579g CrossRefGoogle Scholar
  38. 38.
    Benkoski JJ, Flores P, Kramer EJ (2003) Macromolecules 36:3289. doi: https://doi.org/10.1021/ma034013j CrossRefGoogle Scholar
  39. 39.
    Oswald HJ, Turi A (1965) Polym Eng Sci 5:152CrossRefGoogle Scholar
  40. 40.
    DiMarzio A, Guttman CM (1980) Polymer 21:733. doi: https://doi.org/10.1016/0032-3861(80)90288-8 CrossRefGoogle Scholar
  41. 41.
    Saito O (1968) J Phys Soc Jpn 13:1451. doi: https://doi.org/10.1143/JPSJ.13.1451 CrossRefGoogle Scholar
  42. 42.
    Kennedy MA, Peacock AJ, Mandelkern L (1994) Macromolecules 27:5297. doi: https://doi.org/10.1021/ma00097a009 CrossRefGoogle Scholar
  43. 43.
    Andrews JM, Ward IM (1970) J Mater Sci 5:411. doi: https://doi.org/10.1007/BF00550003 CrossRefGoogle Scholar
  44. 44.
    Williamson GR, Wright B, Haward RW (1964) J Appl Chem 14:131CrossRefGoogle Scholar
  45. 45.
    Popli R, Mandelkern L (1987) J Polym Sci B Polym Phys 25:441. doi: https://doi.org/10.1002/polb.1987.090250301 CrossRefGoogle Scholar
  46. 46.
    Warner SB (1978) J Polym Sci B Polym Phys 16:2139CrossRefGoogle Scholar
  47. 47.
    Robelin-Souffache E, Rault J (1989) Macromolecules 22:3581. doi: https://doi.org/10.1021/ma00199a015 CrossRefGoogle Scholar
  48. 48.
    MacMahon W, Birdsall HA, Johnson GR, Camilli CT (1959) J Chem Eng Data 4:57. doi: https://doi.org/10.1021/je60001a009 CrossRefGoogle Scholar
  49. 49.
    Winslow FH, Aloisio CJ, Hawkins WL, Matreyek W, Matsuoka S (1963) Chem Ind Lond 533:1465Google Scholar
  50. 50.
    Winslow FH, Hellman MY, Matreyek W, Skills SM (1966) Polym Eng Sci 6:273CrossRefGoogle Scholar
  51. 51.
    Luongo JP (1963) J Polym Sci B Polym Phys 1:141CrossRefGoogle Scholar
  52. 52.
    Miyagi A, Wunderlich B (1972) J Polym Sci B Polym Phys 10:2073CrossRefGoogle Scholar
  53. 53.
    Ellison S, Fisher LD, Alger KW, Zeronian SH (1982) J Appl Polym Sci 27:247. doi: https://doi.org/10.1002/app.1982.070270126 CrossRefGoogle Scholar
  54. 54.
    Ballara A, Verdu J (1989) Polym Degrad Stab 26:361. doi: https://doi.org/10.1016/0141-3910(89)90114-6 CrossRefGoogle Scholar
  55. 55.
    Wyzgoski MG (1981) J Appl Polym Sci 26:1689. doi: https://doi.org/10.1002/app.1981.070260524 CrossRefGoogle Scholar
  56. 56.
    Mucha M, Kryszewski M (1980) Colloid Polym Sci 258:743CrossRefGoogle Scholar
  57. 57.
    Mathur AB, Mathur GN (1982) Polymer (Guildf) 23:54. doi: https://doi.org/10.1016/0032-3861(82)90014-3 CrossRefGoogle Scholar
  58. 58.
    Gensler R, Plummer CJG, Kausch H-H, Kramer E, Pauquet J-R, Zweifel H (2000) Polym Degrad Stab 67:195. doi: https://doi.org/10.1016/S0141-3910(99)00113-5 CrossRefGoogle Scholar
  59. 59.
    Karlsson K, Smith GB, Gedde UW (1992) Polym Eng Sci 32:699CrossRefGoogle Scholar
  60. 60.
    Fayolle B, Verdu J, Piccoz D, Dahoun A, Hiver JM, G’sell C, J Appl Polym Sci (in press)Google Scholar
  61. 61.
    Blais P, Carlsson DJ, Wiles DM (1972) J Polym Sci A-1 Polym Chem 10:1077. doi: https://doi.org/10.1002/pol.1972.150100412 CrossRefGoogle Scholar
  62. 62.
    Rabello MS, White JR (1997) Polym Degrad Stab 56:55. doi: https://doi.org/10.1016/S0141-3910(96)00202-9 CrossRefGoogle Scholar
  63. 63.
    Kostoski D, Stojanović Z (1995) Polym Degrad Stab 47:353. doi: https://doi.org/10.1016/0141-3910(94)00126-X CrossRefGoogle Scholar
  64. 64.
    Sen K, Kumar P (1995) J Appl Polym Sci 55:857. doi: https://doi.org/10.1002/app.1995.070550603 CrossRefGoogle Scholar
  65. 65.
    Zhang RC, Cameron RE (1994) J Appl Polym Sci 74:2234. doi:10.1002/(SICI)1097-4628(19991128)74:9<2234::AID-APP12>3.0.CO;2-SCrossRefGoogle Scholar
  66. 66.
    Lassiaz M, Pouyet J, Verdu J (1994) J Mater Sci 29:2177. doi: https://doi.org/10.1007/BF01154697 CrossRefGoogle Scholar
  67. 67.
    Erlandsson B, Karlsson S, Albertsson AC (1997) Polym Degrad Stab 55:237. doi: https://doi.org/10.1016/S0141-3910(96)00139-5 CrossRefGoogle Scholar
  68. 68.
    Liu M, Horrocks AR, Hall ME (1995) Polym Degrad Stab 49:151. doi: https://doi.org/10.1016/0141-3910(95)00036-L CrossRefGoogle Scholar
  69. 69.
    Quereshi FS, Amin MB, Maadhah AG, Hamid SH (1989) Polym Plast Techn Eng 28:649. doi: https://doi.org/10.1080/03602558908049820 CrossRefGoogle Scholar
  70. 70.
    Papet G, Jirackova-Audouin L, Verdu J (1987) Int J Radiat Appl Instr C Radiat Phys Chem 29:65. doi: https://doi.org/10.1016/1359-0197(87)90063-4 Google Scholar
  71. 71.
    Langlois V, Meyer M, Audouin L, Verdu J (1992) Polym Degrad Stab 36:207. doi: https://doi.org/10.1016/0141-3910(92)90057-C CrossRefGoogle Scholar
  72. 72.
    Nitta KH, Tanaka A (2001) Polymer 42:1219. doi: https://doi.org/10.1016/S0032-3861(00)00418-3 CrossRefGoogle Scholar
  73. 73.
    Voigt-Martin IG, Mandelkern L (1984) J Polym Sci B Polym Phys 22:1901CrossRefGoogle Scholar
  74. 74.
    Jordens K, Wilkes GL, Janzen J, Rohlfing DC, Welch MB (2000) Polymer 41:7175. doi: https://doi.org/10.1016/S0032-3861(00)00073-2 CrossRefGoogle Scholar
  75. 75.
    Galeski A (2005) In: Michler GH, Balta-Calleja FJ (eds) Mechanical properties of polymers based on nanostructure and morphology, chap. 5. Taylor & Francis, Boca Raton, FL, pp 159–211Google Scholar
  76. 76.
    Henning S, Michler GH (2005) In: Michler GH, Balta-Calleja FJ (eds) Mechanical properties of polymers based on nanostructure and morphology, chap. 7. Taylor & Francis, Boca Raton, FL, pp 245–278Google Scholar
  77. 77.
    Trankner T, Hedenquist M, Gedde UW (1994) Polym Eng Sci 34:1581CrossRefGoogle Scholar
  78. 78.
    Bedoui F, Diani J, Régnier G (2004) Polymer (Guildf) 45:2433. doi: https://doi.org/10.1016/j.polymer.2004.01.028 CrossRefGoogle Scholar
  79. 79.
    Capaccio C, Ward IM, Wilding MA, Longman GWJ (1978) J Macromol Sci Phys B25:381CrossRefGoogle Scholar
  80. 80.
    Gedde UW, Ifwarson M (1990) Polym Eng Sci 30:202. doi: https://doi.org/10.1002/pen.760300403 CrossRefGoogle Scholar
  81. 81.
    Chaupart N (1995) PhD thesis, Université Pierre et marie Curie, Paris, pp 131–134Google Scholar
  82. 82.
    Men YF, Rieger J, Enderle H-F, Lilge D (2004) Eur Phys J 15:421Google Scholar
  83. 83.
    Peterlin A (1965) J Polym Sci C9:61Google Scholar
  84. 84.
    Seguela R (2005) J Polym Sci B Polym Phys 43:1729. doi: https://doi.org/10.1002/polb.20414 CrossRefGoogle Scholar
  85. 85.
    Krigbaum WR, Roe R-J, Smith KJ (1964) Polymer (Guildf) 5:533. doi: https://doi.org/10.1016/0032-3861(64)90202-2 CrossRefGoogle Scholar
  86. 86.
    Huang Y-L, Brown N (1991) J Polym Sci B Polym Phys 29:129. doi: https://doi.org/10.1002/polb.1991.090290116 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Bruno Fayolle
    • 1
  • Emmanuel Richaud
    • 1
  • Xavier Colin
    • 1
  • Jacques Verdu
    • 1
  1. 1.LIM (UMR 8006), Arts et Métiers ParisTech.ParisFrance

Personalised recommendations