Advertisement

Journal of Materials Science

, Volume 44, Issue 3, pp 897–902 | Cite as

Microstructural study of adiabatic shear bands formed in serrated chips during high-speed machining of hardened steel

  • C. Z. DuanEmail author
  • Y. J. Cai
  • M. J. Wang
  • G. H. Li
Article

Abstract

The characterization of the microstructure and phase transformation in adiabatic shear bands (ASBs) within the serrated chips generated during high-speed machining of hardened 30CrNi3MoV steel has been performed. The observations showed that the microstructure gradually changes from the center of the ASB to the matrix of the chip, the fine equiaxed grains appear with size of about 0.4–0.6 μm in the center of the ASBs, the transitional region adjacent to the ASB is characterized by the broken and elongated martensite laths in shear direction. The analysis indicated that the serrated chip formation was likely due to adiabatic shear instability that occurred in the primary shear zones and the transformation to martensite within the ASB. Dynamic recovery and recrystallization are the dominant metallurgical processes during microstructural evolution of ASB.

Keywords

Martensite Shear Band Martensite Lath Adiabatic Shear Adiabatic Shear Band 

Notes

Acknowledgements

This research is supported by National Natural Science Foundation(50875033, 50775018), by the Natural Science Key Foundation of Tianjin (No.08JCZDJC18400),and by Tianjin Key Laboratory of High Speed Cutting & Precision Machining. The authors are grateful to Prof. Xu Yongbo for his contribution in the microscopic analysis.

References

  1. 1.
    Rogers HC (1979) Annu Rev Mater Sci 9:283. doi: https://doi.org/10.1146/annurev.ms.09.080179.001435 CrossRefGoogle Scholar
  2. 2.
    Wittman CL, Meyers MA, Pak HR (1990) Metall Trans 21A:707CrossRefGoogle Scholar
  3. 3.
    Meyers MA, Wittman CL (1990) Metall Trans 21A:3153CrossRefGoogle Scholar
  4. 4.
    Meyers MA, Pak HR (1986) Acta Metall 34:2493. doi: https://doi.org/10.1016/0001-6160(86)90152-5 CrossRefGoogle Scholar
  5. 5.
    Meyers MA, Andrade UR, Chokshi AH (1995) Metall Trans 26A:2881CrossRefGoogle Scholar
  6. 6.
    Meyers MA, Nesterenko VF, LaSalvia JC et al (2001) Mater Sci Eng A 317:204. doi: https://doi.org/10.1016/S0921-5093(01)01160-1 CrossRefGoogle Scholar
  7. 7.
    Cho K, Lee S, Nutt SR et al (1993) Acta Metall Mater 41:923. doi: https://doi.org/10.1016/0956-7151(93)90026-O CrossRefGoogle Scholar
  8. 8.
    Bai YL, Xue Q, Xu YB et al (1994) Acta Metall Mater 17:155Google Scholar
  9. 9.
    Xu YB, Ling Z, Wu X et al (2002) J Mater Sci Technol 18:504CrossRefGoogle Scholar
  10. 10.
    Xie JQ, Bayoumi AE, Zbib HM (1996) Int J Mach Tools Manuf 7:835. doi: https://doi.org/10.1016/0890-6955(95)00016-X CrossRefGoogle Scholar
  11. 11.
    Molinari A, Musquar C, Sutter G (2002) Int J Plast 18:443. doi: https://doi.org/10.1016/S0749-6419(01)00003-1 CrossRefGoogle Scholar
  12. 12.
    Campbell CE, Bendersky LA, Boettinger WJ et al (2007) Mater Sci Eng A 430:15. doi: https://doi.org/10.1016/j.msea.2006.04.122 CrossRefGoogle Scholar
  13. 13.
    Derby B (1991) Acta Metall Mater 39:955. doi: https://doi.org/10.1016/0956-7151(91)90295-C CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C. Z. Duan
    • 1
    • 2
    Email author
  • Y. J. Cai
    • 2
  • M. J. Wang
    • 1
  • G. H. Li
    • 1
  1. 1.Key Laboratory of Ministry of Education for Precision and Non-traditional Machining, School of Mechanical EngineeringDalian University of TechnologyDalianChina
  2. 2.Tianjin Key Laboratory of High Speed Cutting & Precision MachiningTianjin University of Technology and EducationTianjinChina

Personalised recommendations