Journal of Materials Science

, Volume 43, Issue 21, pp 6920–6924 | Cite as

Study on deformation behavior and strain homogeneity during cyclic extrusion and compression

  • Jinbao Lin
  • Qudong Wang
  • Liming Peng
  • Hans J. Roven


In this paper, the plastic deformation behavior and strain homogeneity of the ZK60 Mg alloy during the multi-pass cyclic extrusion and compression (CEC) was simulated using the finite-element method (FEM) with a view to provide an insight into the mechanics of the process. Physical modeling (PM) experiment with same alloy was carried out to verify the results of the numerical simulations. The results show that two vortex flow regions with opposite flow direction are formed inside the cylindrical workpiece during CEC deformation. Although the deformation is inhomogeneous in both end regions of workpiece, a uniform region of equivalent strain exists, and the extent of uniform deformation increased with the increase in workpiece length.


Strain Homogeneity Severe Plastic Deformation Processing Plastic Deformation Behavior Cylindrical Workpiece Opposite Flow Direction 



This work was supported by the National Natural Science Foundation of China (No. 50674067), National Basic Research Program of China (No. 2007CB613701) and Program of Shanghai Subject Chief Scientist (No. 08XD14020). Special thanks to Snorre Kjørstad Fjeldbo for useful comments on the manuscript.


  1. 1.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: CrossRefGoogle Scholar
  2. 2.
    Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT (2006) JOM 58(4):33. doi: CrossRefGoogle Scholar
  3. 3.
    Lin JB, Wang QD, Peng LM, Peng T (2008) Mater Trans 49:1021. doi: CrossRefGoogle Scholar
  4. 4.
    Valiev RZ (2007) J Mater Sci 42:1483. doi: CrossRefGoogle Scholar
  5. 5.
    Wang QD, Lin JB, Peng LM, Chen YJ (2008) Acta Metall Sinica 44(1):55Google Scholar
  6. 6.
    Richert J, Richert M (1986) Aluminium 62(8):604Google Scholar
  7. 7.
    Lin JB, Wang QD, Peng LM, Roven HJ (2008) J Alloys Compd. doi: CrossRefGoogle Scholar
  8. 8.
    Richert M, Liu Q, Hansen N (1999) Mater Sci Eng A 260:275. doi: CrossRefGoogle Scholar
  9. 9.
    Lee SW, Yeh JW (2005) Metall Mater Trans A 36:2225. doi: CrossRefGoogle Scholar
  10. 10.
    Petrescu D, Savage SC, Hodgson PD (2002) J Mater Process Technol 125–126:361. doi: CrossRefGoogle Scholar
  11. 11.
    Nagasekhar AV, Kim HS (2008) Comput Mater Sci. doi: 10.1016/jcommatsci2008.02.030Google Scholar
  12. 12.
    Zhao WJ, Ding H, Ren YP, Hao SM, Wang J, Wang JT (2005) Mater Sci Eng A 410–411:348. doi: CrossRefGoogle Scholar
  13. 13.
    Dumoulin S, Roven HJ, Werenskiold JC, Valberg HS (2005) Mater Sci Eng A 410–411:248. doi: CrossRefGoogle Scholar
  14. 14.
    Tham YW, Fu MW, Hng HH, Yong MS, Lim KB (2007) J Mater Process Technol 192–193:121. doi: CrossRefGoogle Scholar
  15. 15.
    Gavrus A, Massoni E, Chenot JL (1996) J Mater Process Technol 60:447. doi: CrossRefGoogle Scholar
  16. 16.
    Rosochowski A, Olejnik L (2002) J Mater Process Technol 125–126:309. doi: CrossRefGoogle Scholar
  17. 17.
    MSC.Superform 2005, Command reference manualGoogle Scholar
  18. 18.
    Richert M, Korbel A (1995) J Mater Process Technol 53:331. doi: CrossRefGoogle Scholar
  19. 19.
    Choi I, Horgan CO (1977) J Appl Mech 44:424CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jinbao Lin
    • 1
    • 2
  • Qudong Wang
    • 1
  • Liming Peng
    • 1
  • Hans J. Roven
    • 3
  1. 1.National Engineering Research Center for Light Alloy Net FormingShanghai Jiao Tong UniversityShanghaiChina
  2. 2.School of Applied ScienceTaiyuan University of Science and TechnologyTaiyuanChina
  3. 3.Department of Materials Science and EngineeringThe Norwegian University of Science and TechnologyTrondheimNorway

Personalised recommendations