Journal of Materials Science

, Volume 43, Issue 19, pp 6468–6472 | Cite as

Three-dimensional (3D) modeling of the thermoelastic behavior of woven glass fiber-reinforced resin matrix composites

  • X. Deng
  • N. Chawla


The thermoelastic behavior of glass fiber-reinforced resin matrix composites is very important in several applications such as electronic packaging. Simulation of the composite behavior is complicated because of the complex nature of woven fiber architecture. In this study, we have conducted a numerical simulation of elastic and thermal expansion behavior of woven glass fiber-reinforced resin matrix composite. The simulations were compared to experimental data, showing excellent agreement with elastic properties and fairly good results for the thermal expansion coefficient of the composite.


Fiber Bundle Print Circuit Board Resin Matrix Thermoelastic Behavior Composite Bundle 



The authors acknowledge the financial support for this work from Isola Laminates Inc. We thank Mr. Tarun Amla for providing the experimental data for Young’s modulus and coefficient of thermal expansion.


  1. 1.
    Kutz M (ed) (2002) Handbook of materials selection. Wiley, New YorkGoogle Scholar
  2. 2.
    Glazer JJ (1994) J Electron Mater 23(8):693. doi: CrossRefGoogle Scholar
  3. 3.
    Wood EP, Nimmo KL (1994) J Electron Mater 23:709. doi: CrossRefGoogle Scholar
  4. 4.
    Abtew M, Selvardery G (2000) Mater Sci Eng Rep 27:95. doi: CrossRefGoogle Scholar
  5. 5.
    Deng X, Piotrowski G, Williams JJ, Chawla N (2003) J Electron Mater 32:1403. doi: CrossRefGoogle Scholar
  6. 6.
    Wu CML, Lai JKL, Wu YL (1998) Finite Elem Anal Des 30:19. doi: CrossRefGoogle Scholar
  7. 7.
    Yamada SE (1987) Eng Fract Mech 27:315. doi: CrossRefGoogle Scholar
  8. 8.
    Rice JR (1988) J Appl Mech Trans ASME 55:98CrossRefGoogle Scholar
  9. 9.
    Xie DJ, Wang ZP (1998) Finite Elem Anal Des 30:31. doi: CrossRefGoogle Scholar
  10. 10.
    Darveaux R, Banerji K, Mawer A, Dody G (1995) In: Lau JH (ed) Ball grid array technology. McGraw-Hill, New York, p 379Google Scholar
  11. 11.
    Solomon HD (1994) In: Fear DR, Burchett SN, Morgan HS, Lau JH (eds) The mechanics of solder alloy interconnects. Van Norstrand Reinhold, New York, p 199Google Scholar
  12. 12.
    Yang QJ, Shi XQ, Wang ZP, Shi ZF (2003) Finite Elem Anal Des 39:819. doi: CrossRefGoogle Scholar
  13. 13.
    Lau JH, Pao YH (1997) Solder joint reliability of BGA, CSP, flip chip, and fine pitch smt assemblies. McGraw-Hill, New YorkGoogle Scholar
  14. 14.
    Shi XQ, Zhou W, Pang HLJ, Wang ZP (1999) J Electron Packaging 121(3):179. doi: CrossRefGoogle Scholar
  15. 15.
    Tabiei A, Ivanov I (2004) Int J Non-linear Mech 39:175. doi: CrossRefGoogle Scholar
  16. 16.
    Ishikawa T, Chou TW (1982) J Compos Mater 16:2. doi: CrossRefGoogle Scholar
  17. 17.
    Hahn HT, Tsai SW (1973) J Compos Mater 7:102CrossRefGoogle Scholar
  18. 18.
    Naik RA (1995) J Compos Mater 29:2334CrossRefGoogle Scholar
  19. 19.
    Ivanov I, Tabiei A (2001) Compos Struct 54(4):489. doi: CrossRefGoogle Scholar
  20. 20.
    Seifert OE, Schumacher SC, Hansen AC (2003) Compos Part B 34:571. doi: CrossRefGoogle Scholar
  21. 21.
    Zako M, Uetsuji Y, Kurashiki T (2003) Compos Sci Technol 63:507. doi: CrossRefGoogle Scholar
  22. 22.
    Ellyin F, Xia Z, Chen Y (2002) Compos Part A 33:399. doi: CrossRefGoogle Scholar
  23. 23.
    Chawla N, Tur YK, Holmes JW, Barber JR, Szweda A (1998) J Am Ceram Soc 81:1221CrossRefGoogle Scholar
  24. 24.
    Shuler SF, Holmes JW, Wu X, Roach D (1993) J Am Ceram Soc 76:2327. doi: CrossRefGoogle Scholar
  25. 25.
    Chawla N, Chawla KK (2006) Metal matrix composites. Springer, New YorkGoogle Scholar
  26. 26.
    Schapery RA (1968) J Compos Mater 2:380. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Materials, Fulton School of EngineeringArizona State UniversityTempeUSA
  2. 2.KennametalRogersUSA

Personalised recommendations