Journal of Materials Science

, Volume 43, Issue 19, pp 6453–6458 | Cite as

Self-assembly of polystyrene microspheres within spatially confined rectangular microgrooves

  • Shih-Kai Wu
  • Tzu-Piao Tang
  • Wenjea J. TsengEmail author


A convective self-assembly of mono-sized polystyrene spheres with diameters ranging from 262 to 1000 nm was conducted on patterned silicon wafers with one-dimensional, periodic rectangular microgrooves of different widths (0.65–6 μm). The latex beads were driven into the spatially confined microgrooves by the capillary interactions and the confined wall during solvent evaporation, resulting in a range of packing structures. Processing variables including evaporation temperature, particle size (D), groove width (W), and groove height (H) were examined experimentally, and geometrical models were proposed to explain the various packing structures obtained. The degree of spatial freedom for the particles to rearrange themselves in the confined channels is found critical to the assembled particle-packing structure.


Capillary Force Latex Particle Evaporation Temperature Colloidal Crystal Groove Width 



Financial support from the National Science Council (Taiwan, ROC) under contract 92-2216-E-005-021 is gratefully acknowledged.


  1. 1.
    Park S, Qin D, Xia Y (1998) Adv Mater 10:1028. doi:10.1002/(SICI)1521-4095(199809)10:13<1028::AID-ADMA1028>3.0.CO;2PCrossRefGoogle Scholar
  2. 2.
    Holgado M, Garcia-Santamaria F, Blanco A, Ibisate M, Cintas A, Miguez H et al (1999) Langmuir 15:4701. doi: CrossRefGoogle Scholar
  3. 3.
    Vlasov YA, Bo X-Z, Sturm JC, Norris DJ (2001) Nature 414:289. doi: CrossRefGoogle Scholar
  4. 4.
    Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1992) Langmuir 8:3183. doi: CrossRefGoogle Scholar
  5. 5.
    Yin Y, Lu Y, Gates B, Xia Y (2001) J Am Chem Soc 123:8718. doi: CrossRefGoogle Scholar
  6. 6.
    Hoogenboom JP, Rétif C, de Bres E, van de Boer M, van Langen-Suurling AK, Romijn J et al (2004) Nano Lett 4:205. doi: CrossRefGoogle Scholar
  7. 7.
    Ozin GA, Yang SM (2001) Adv Funct Mater 11:95. doi:10.1002/1616-3028(200104)11:2<95::AID-ADFM95>3.0.CO;2-OCrossRefGoogle Scholar
  8. 8.
    Yang SM, Míguez H, Ozin GA (2002) Adv Funct Mater 12:425. doi:10.1002/1616-3028(20020618)12:6/7<425::AID-ADFM425>3.0.CO;2-UCrossRefGoogle Scholar
  9. 9.
    Ye Y-H, Badilescu S, Truong V-V, Rochon P, Natansohn A (2001) Appl Phys Lett 79:872. doi: CrossRefGoogle Scholar
  10. 10.
    Joannopoulos JD, Villeneuve PR, Fan S (1997) Nature 386:143. doi: CrossRefGoogle Scholar
  11. 11.
    Krauss TF, De La Rue RM (1999) Prog Quantum Electron 23:51. doi: CrossRefGoogle Scholar
  12. 12.
    Aoki K, Miyazaki HT, Hirayama H, Inoshita K, Baba T, Sakoda K et al (2003) Nat Mater 2:117. doi: CrossRefGoogle Scholar
  13. 13.
    Dimitrov AS, Nagayama K (1996) Langmuir 12:1303. doi: CrossRefGoogle Scholar
  14. 14.
    Lin KH, Crocker JC, Prasad V, Schofield A, Weitz DA, Lubensky TC et al (2000) Phys Rev Lett 85:1770. doi: CrossRefGoogle Scholar
  15. 15.
    Aizenberg J, Braun PV, Wiltzius P (2000) Phys Rev Lett 84:2997. doi: CrossRefGoogle Scholar
  16. 16.
    Ye YH, LeBlanc F, Haché A, Truong V-V (2001) Appl Phys Lett 78:52. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Department of Materials and Mineral Resources EngineeringNational Taipei University of TechnologyTaipeiTaiwan

Personalised recommendations