Advertisement

Journal of Materials Science

, Volume 43, Issue 19, pp 6495–6499 | Cite as

Study of machinable SiC/Gr/Al composites

  • Jinfeng LengEmail author
  • Longtao Jiang
  • Qiang Zhang
  • Gaohui Wu
  • Dongli Sun
  • Qingbo Zhou
Article

Abstract

The effect of flaky graphite particles [with volume fraction (vf) 3–7%] on machinability and mechanical properties of SiC/Al composites were investigated. Results showed that the machinability was improved greatly with the increasing vf of graphite particles. When the vf of graphite particles was 7%, the tool life was prolonged by 130%, and the tensile strength and elastic modulus of SiC/Gr/Al composite were 365 MPa and 144 GPa, respectively. The presence of flake graphite particle acted as solid lubrication and promoted chip formation during cutting, resulting in an improved machinability.

Keywords

Tool Wear Tool Life Abrasive Wear Flank Wear Graphite Particle 

References

  1. 1.
    Mohn WR, Vukobratorich D (1988) J Mater Des 10:225. doi: https://doi.org/10.1007/BF02834166 Google Scholar
  2. 2.
    Mohn WR (1988) SAMPE January–February 26Google Scholar
  3. 3.
    Bergman F, Jacobason S (1994) Wear 179:89. doi: https://doi.org/10.1016/0043-1648(94)90224-0 CrossRefGoogle Scholar
  4. 4.
    Hung NP, Boey KA, Khor CA (1995) J Mater Process Technol 48:292. doi: https://doi.org/10.1016/0924-0136(94)01661-J CrossRefGoogle Scholar
  5. 5.
    Ei-Gallab M, Sklad M (1998) J Mater Process Technol 83:151. doi: https://doi.org/10.1016/S0924-0136(98)00054-5 CrossRefGoogle Scholar
  6. 6.
    Deuis RL, Subramanian C, Yellup JM (1996) Wear 201:132. doi: https://doi.org/10.1016/S0043-1648(96)07228-6 CrossRefGoogle Scholar
  7. 7.
    Songmene V (2000) Machinability of graphitic MMC consisting of an aluminium alloy matrix reinforced with both soft nickel-coated graphite particles and SiC [D] 78Google Scholar
  8. 8.
    Zhang J, Perez R, Lavernia EJ (1994) Acta Metall Mater 42:395. doi: https://doi.org/10.1016/0956-7151(94)90495-2 CrossRefGoogle Scholar
  9. 9.
    Rohatgi PK, Nath D, Singh S, Keshavaram S (1989) J Mater Sci 29:5975. doi: https://doi.org/10.1007/BF00366882 CrossRefGoogle Scholar
  10. 10.
    Ames W, Alpas AT (1995) Metall Mater Trans A 26A:85. doi: https://doi.org/10.1007/BF02669796 CrossRefGoogle Scholar
  11. 11.
    Ted Guo L, Tsao CYA (2000) Compos Sci Technol 60:65. doi: https://doi.org/10.1016/S0266-3538(99)00106-2 CrossRefGoogle Scholar
  12. 12.
    Gui MC, Kang SB (2001) Mater Lett 51:396. doi: https://doi.org/10.1016/S0167-577X(01)00327-5 CrossRefGoogle Scholar
  13. 13.
    Leng JF, Wu GH (2006) Trans Nonferrous Soc China 16:1640Google Scholar
  14. 14.
    Rabinowicz E (1965) Friction and wear of material. Wiley, NYGoogle Scholar
  15. 15.
    Lin JT, Bhattacharyya D, Lane C (1995) Wear 181–183:883CrossRefGoogle Scholar
  16. 16.
    Leroy G, Embury JD, Edward G, Ashby MF (1981) Acta Metall 29:1509. doi: https://doi.org/10.1016/0001-6160(81)90185-1 CrossRefGoogle Scholar
  17. 17.
    Flom Y, Arsenault RJ (1986) Mater Sci Eng 77:191. doi: https://doi.org/10.1016/0025-5416(86)90368-X CrossRefGoogle Scholar
  18. 18.
    Geiger L, Jackson M (1989) Adv Mater Process 136:23Google Scholar
  19. 19.
    Wu GH, Ma SL, Li RH, Jiang LT (1998) Chinese inertial instruments and component academic conference. Wenzhou, ChinaGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jinfeng Leng
    • 1
    Email author
  • Longtao Jiang
    • 1
  • Qiang Zhang
    • 1
  • Gaohui Wu
    • 1
  • Dongli Sun
    • 1
  • Qingbo Zhou
    • 2
  1. 1.Center for Metal Matrix Composites Engineering TechnologyHarbin Institute of TechnologyHarbinChina
  2. 2.Northeast Light Alloys Company Ltd.HarbinChina

Personalised recommendations