Mechanical properties of ultrafine grained ferritic steel sheets fabricated by rolling and annealing of duplex microstructure
- 433 Downloads
- 25 Citations
Abstract
A new route to fabricate ultrafine grained (UFG) ferritic steel sheets without severe plastic deformation is proposed in this article. A low-carbon steel sheet with a duplex microstructure composed of ferrite and martensite was cold-rolled to a reduction of 91% in thickness, and then annealed at 620–700 °C. The microstructure obtained through the process with annealing temperatures below 700 °C was the UFG ferrite including fine cementite particles homogenously dispersed. The grain size of ferrite matrix changed from 0.49 to 1.0 μm depending on the annealing temperature. Dynamic tensile properties of the produced UFG steels were investigated. The obtained UFG ferrite–cementite steels without martensite phase showed high strain rate sensitivity in flow stress. The UFG ferritic steels are expected to have high potential to absorb crash energy when applied to automobile body.
Keywords
Ferrite Martensite Cementite Strain Rate Sensitivity Ferrite MatrixReferences
- 1.Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Scripta Mater 47:893. doi: https://doi.org/10.1016/S1359-6462(02)00282-8 CrossRefGoogle Scholar
- 2.Tsuji N, Okuno S, Koizumi Y, Minamino Y (2004) Mater Trans 45:2272. doi: https://doi.org/10.2320/matertrans.45.2272 CrossRefGoogle Scholar
- 3.Jia D, Ramesh KT, Ma E (2003) Acta Mater 5:3495. doi: https://doi.org/10.1016/S1359-6454(03)00169-1 CrossRefGoogle Scholar
- 4.Tsuchida N, Masuda H, Harada Y, Fukaura K, Tomota Y, Nagai K (2008) Mater Sci Eng A 488:446. doi: https://doi.org/10.1016/j.msea.2007.11.047 CrossRefGoogle Scholar
- 5.Segal VM (1995) Mater Sci Eng A 197:157. doi: https://doi.org/10.1016/0921-5093(95)09705-8 CrossRefGoogle Scholar
- 6.Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scripta Mater 35:143. doi: https://doi.org/10.1016/1359-6462(96)00107-8 CrossRefGoogle Scholar
- 7.Valiev RZ, Korznikov AV, Mulyukov RR (1993) Mater Sci Eng A 168:141. doi: https://doi.org/10.1016/0921-5093(93)90717-S CrossRefGoogle Scholar
- 8.Tanimura S, Mimura K, Umeda T (2003) J Phys IV 110:385. doi: https://doi.org/10.1051/jp4:20020724 Google Scholar
- 9.Chuman Y, Kimura K, Tanimura S (1997) Int J Impact Eng 19:165. doi: https://doi.org/10.1016/S0734-743X(96)00019-X CrossRefGoogle Scholar
- 10.Website of Saginomiya Seisakusyo Inc. https://doi.org/www.saginomiya.co.jp/eng/dynamic/zairyo/zairyo08.html. Accessed 22 Aug 2008
- 11.Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, Oxford, p 457Google Scholar
- 12.Kamikawa N, Sakai T, Tsuji N (2007) Acta Mater 55:5873. doi: https://doi.org/10.1016/j.actamat.2007.07.002 CrossRefGoogle Scholar
- 13.Ueji R, Tsuji N, Minamino Y, Koizumi Y (2002) Acta Mater 50:4177. doi: https://doi.org/10.1016/S1359-6454(02)00260-4 CrossRefGoogle Scholar
- 14.Morito S, Huang X, Furuhara T, Maki T, Hansen N (2004) Proceedings of the 25th Riso international symposium on materials science, p 453Google Scholar
- 15.Kamikawa N, Tsuji N, Saito Y (2003) Tetsu-to-Hagane 89:273 (in Japanese)CrossRefGoogle Scholar
- 16.Takagi S, Tokita Y, Sato K, Shimizu T, Hashiguchi K, Ogawa K et al (2005) Spec Publ Soc Automot Eng No. SP-1954:7Google Scholar
- 17.Takahashi M, Uenishi A, Yoshita H, Kuriyama Y (2003) Int Body Eng Conf 2003:7Google Scholar
- 18.Tsuchida N, Tomota Y, Nagai K (2004) Tetsu-to-Hagane 90:1043 (in Japanese)CrossRefGoogle Scholar