Advertisement

Journal of Materials Science

, Volume 44, Issue 7, pp 1711–1725 | Cite as

Segregation behavior at TGO/bondcoat interfaces

  • P. Y. HouEmail author
Interface Science in Thermal Barrier Coatings

Abstract

The segregation of sulfur and other elements at the interface between thermally grown alumina and a few coatings have been reviewed and compared with studies made at oxide/metal interfaces formed on model alloys. The coatings studied were NiPtAl on CMSX-4 or AM1 with two different bulk sulfur contents, and NiCoCrAlY on PWA 1484. The segregation behavior at the oxide/PWA1484 interface was also reported. Auger electron microscopy was used to study the chemistry at the oxide/coating interface after portions of the oxide were removed in ultra high vacuum (UHV) by scratches made on the oxidized sample surface. The extent of oxide spallation in relation to the scratch width was utilized to evaluate the interfacial strength, which was then correlated with the interface impurity level. Results showed strong relationship between sulfur segregation and the composition of the alloy substrates. In addition to substrate sulfur content, the degree of sulfur segregation was most significantly increased by Cr co-segregation or decreased by Y doping of the coating. Pt and Hf could stop segregation only when present together. P was found as a significant segregand in one case where sulfur segregation was prevented by Y. These behaviors are discussed in terms of various thermochemical interactions in the bulk and at the interface.

Keywords

Interfacial Strength Al2O3 Scale Segregation Behavior Segregation Energy Sulfur Segregation 

Notes

Acknowledgements

The author is grateful for the following people and company for providing samples: Snecma (Safran group) for the NiPtAl on AM1 through Dr. Regine Molins, Mr. Kenneth S. Murphy at Howmet Castings for the NiPtAl on CMSX4 through Dr. Vladimir Tolpygo and Mr. M. Maloney and Mr. D. Litton of Pratt and Whitney for the NiCoCrAlY on PWA1484 through Prof. Kevin Hemker. The permissions from Dr. Regine Molins of Ecole des Mines de Paris and Dr. Vladimir Tolpygo of Honeywell Aerospace to use some of their results from our prior collaborations are greatly appreciated. The Auger studies were performed at the Molecular Foundry, Lawrence Berkeley National Laboratory. Financial supports for the Molecular Foundry and for parts of this work are provided by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work is also supported in part by AFOSR under the MEANS-2 Program (Grant No. FA9550-05-1-0173).

References

  1. 1.
    Gell M, Vaidyanathan K, Barber B, Cheng J, Jordon E (1999) Metall Mater Trans A 30A:427. doi: https://doi.org/10.1007/s11661-999-0332-1 CrossRefGoogle Scholar
  2. 2.
    Meier SM, Nissley DM, Sheffler KD, Cruse TA (1992) J Eng Gas Turb Power 114:258. doi: https://doi.org/10.1115/1.2906581 CrossRefGoogle Scholar
  3. 3.
    Hou PY (2008) Ann Rev Mater Res 38:275CrossRefGoogle Scholar
  4. 4.
    Kiely J, Yeh T, Bonnell DA (1997) Surf Sci 393:L126. doi: https://doi.org/10.1016/S0039-6028(97)00786-3 CrossRefGoogle Scholar
  5. 5.
    Zhang W, Smith JR, Wang XG, Evans AG (2003) Phys Rev B 67:245414. doi: https://doi.org/10.1103/PhysRevB.67.245414 CrossRefGoogle Scholar
  6. 6.
    Hou PY, Priimak K (2005) Oxid Met 63:113. doi: https://doi.org/10.1007/s11085-005-1954-3 CrossRefGoogle Scholar
  7. 7.
    Smith JR, Jiang Y, Evans AG (2007) Int J Mater Res 12:1214CrossRefGoogle Scholar
  8. 8.
    Hayashi S, Wang W, Sordelet DJ, Gleeson B (2005) Metall Mater Trans A 36:1769. doi: https://doi.org/10.1007/s11661-005-0041-3 CrossRefGoogle Scholar
  9. 9.
    Whittle DP, Stringer J (1980) Philos Trans R Soc Lond A 295:309. doi: https://doi.org/10.1098/rsta.1980.0124 CrossRefGoogle Scholar
  10. 10.
    Pint BA (2001) In: Tortorelli P, Wright IG, Hou PY (eds) Proceedings of the John Stringer symposium on high temperature corrosion, ASM International, OH, p 52Google Scholar
  11. 11.
    Funkenbusch W, Smeggil JG, Bornstein NS (1985) Metall Trans 16A:1164CrossRefGoogle Scholar
  12. 12.
    Smialek JL, Browning R (1985) In: Munir ZA, Cubicciott D (eds) Proceedings of the Symposium in High Temperature Materials Chemistry III, vol 82-2. The Electrochemical Society, PA, p 258Google Scholar
  13. 13.
  14. 14.
    Hou PY, Isumi T, Gleeson B (2008) Oxid Met (in press)Google Scholar
  15. 15.
    Felten EJ (1976) Oxid Met 10:23. doi: https://doi.org/10.1007/BF00611696 CrossRefGoogle Scholar
  16. 16.
    Haynes JA, Pint BA, More KL, Zhang Y, Wright IG (2002) Oxid Met 58:513. doi: https://doi.org/10.1023/A:1020525123056 CrossRefGoogle Scholar
  17. 17.
    Cadoret Y, Bacos M-P, Josso P, Maurice V, Marcus P, Zanna S (2004) Mater Sci Forum 461–464:274Google Scholar
  18. 18.
    Hou PY, McCarty KF (2006) Scr Metab 54:937. doi: https://doi.org/10.1016/j.scriptamat.2005.10.065 CrossRefGoogle Scholar
  19. 19.
    Warnes BM, Punola DC (1997) Surf Coat Technol 94–95:1. doi: https://doi.org/10.1016/S0257-8972(97)00467-2 CrossRefGoogle Scholar
  20. 20.
    Hou PY, Tolpygo VK (2007) Surf Coat Technol 202:623. doi: https://doi.org/10.1016/j.surfcoat.2007.06.013 CrossRefGoogle Scholar
  21. 21.
    Meier SM, Nissley DM, Sheffler KD (1991) Report vol 189111, National Aeronautics and Space Administration, Cleveland, OHGoogle Scholar
  22. 22.
    Hou PY (1998) In: Hou PY, McNallan MJ, Oltra R, Opila EJ, Shores DA (eds) High temperature corrosion and materials chemistry, The Electrochemical Society, Pennington, p 198Google Scholar
  23. 23.
    Molins R, Hou PY (2006) Surf Coat Technol 201:3841. doi: https://doi.org/10.1016/j.surfcoat.2006.07.251 CrossRefGoogle Scholar
  24. 24.
    Davis LE, MacDonald NC, Palmbery PW, Riach GE, Weber RE (1976) Handbook of auger electron spectroscopy, 2nd edn. Physical Electronics Division, Perkin-Elmer Corporation, MinnesotaGoogle Scholar
  25. 25.
    Molins R, Guerre C, Remy L (2003) Rev Metallurgie 100:507CrossRefGoogle Scholar
  26. 26.
    Molins R, Rouzou I, Hou PY (2006) Oxid Met 65:263. doi: https://doi.org/10.1007/s11085-006-9019-9 CrossRefGoogle Scholar
  27. 27.
    Chieux M, Molins R, Remy L, Duhamel C, Sennour M, Cadoret Y (2008) Proceedings of the 7th International Symposium on High Temperature Corrosion and Protection of Materials. Les Embiez, FranceGoogle Scholar
  28. 28.
    Molins R, Rouzou I, Remy L, Le Biavant-Guerrier K, Jomard F (2005) Mater High Temp 22:359. doi: https://doi.org/10.3184/096034005782744083 CrossRefGoogle Scholar
  29. 29.
    Mendis BG, Tryon B, Pollock TM, Hemker KJ (2006) Surf Coat Technol 201:3918. doi: https://doi.org/10.1016/j.surfcoat.2006.07.249 CrossRefGoogle Scholar
  30. 30.
    Hindam H, Whittle DP (1982) J Electrochem Soc 129:1147. doi: https://doi.org/10.1149/1.2124044 CrossRefGoogle Scholar
  31. 31.
    Whittle DP, Schaffer S, Boone DH (1981) Thin Solid Films 84:73. doi: https://doi.org/10.1016/0040-6090(81)90011-0 CrossRefGoogle Scholar
  32. 32.
    Toscano J, Vaen R, Gil A, Subanovic M, Naumenko D, Singheiser L et al (2006) Surf Coat Technol 201:3906. doi: https://doi.org/10.1016/j.surfcoat.2006.07.247 CrossRefGoogle Scholar
  33. 33.
    Hemker KJ, Mendis BG, Livi KJT (2006) Scr Mater 55:589. doi: https://doi.org/10.1016/j.scriptamat.2006.06.017 CrossRefGoogle Scholar
  34. 34.
    Hou PY (2000) Mater Corros 51:329. doi:10.1002/(SICI)1521-4176(200005)51:5<329::AID-MACO329>3.0.CO;2-KCrossRefGoogle Scholar
  35. 35.
    Pint BA, Wright IG, Lee WY, Zhang Y, Prüßner K, Alexander KB (1998) Mater Sci Eng A 245:201CrossRefGoogle Scholar
  36. 36.
    Haynes JA, Pint BA, Zhang Y, Wright IG (2007) Surf Coat Technol 202:730. doi: https://doi.org/10.1016/j.surfcoat.2007.06.039 CrossRefGoogle Scholar
  37. 37.
    Johnson WC, Blakely JM (eds) (1997) Interfacial Segregation. ASM, Materials ParkGoogle Scholar
  38. 38.
    Uebing C (1996) Prog Surf Sci 53:297. doi: https://doi.org/10.1016/S0079-6816(96)00027-5 CrossRefGoogle Scholar
  39. 39.
    Lzumi T, Gleeson B (2006) Mater Sci Forum 522–523:221Google Scholar
  40. 40.
    Sarioglu C, Stiger MJ, Blachere JR, Janakiraman R, Schumann E, Ashary A et al (2000) Mater Corros 51:358. doi:10.1002/(SICI)1521-4176(200005)51:5<358::AID-MACO358>3.0.CO;2-CCrossRefGoogle Scholar
  41. 41.
    Sigler DR (1989) Oxid Met 32:337. doi: https://doi.org/10.1007/BF00665442 CrossRefGoogle Scholar
  42. 42.
    Gauffier A, Saiz E, Tomsia AP, Hou PY (2007) J Mater Sci 42:9524. doi: https://doi.org/10.1007/s10853-007-2093-9 CrossRefGoogle Scholar
  43. 43.
    Tolpygo VK, Viefhaus H (1999) Oxid Met 52:1. doi: https://doi.org/10.1023/A:1018818906559 CrossRefGoogle Scholar
  44. 44.
    Mennicke C, Schumann E, Al-Badairy H, Tatlock GJ, Goebel M, Borchardt G et al (1998) Phys Status Solidi A 167:419. doi:10.1002/(SICI)1521-396X(199806)167:2<419::AID-PSSA419>3.0.CO;2-ECrossRefGoogle Scholar
  45. 45.
    Briant CL, Luthra KL (1988) Metall Trans 19A:2099CrossRefGoogle Scholar
  46. 46.
    Grabke HJ (1986) Steel Res 57:178CrossRefGoogle Scholar
  47. 47.
    Bradley JR, Aaronson HI, Russell KC, Johnson WC (1977) Metall Trans A 8A:1955CrossRefGoogle Scholar
  48. 48.
    LejEek P, Krajnikov AV, Ivashchenko YN, Militzer M, Adamek J (1993) Surf Sci 280:325. doi: https://doi.org/10.1016/0039-6028(93)90685-D CrossRefGoogle Scholar
  49. 49.
    Nikolaeva AV, Nikolaev YA, Kevorkyan YR (2001) At Energy 91:2325Google Scholar
  50. 50.
    Viefhaus H, Richarz B (1995) Mater Corros 46:306. doi: https://doi.org/10.1002/maco.19950460506 CrossRefGoogle Scholar
  51. 51.
    Hong SH, Kang SJ, Yoon DN, Baek WH (1991) Metall Trans A 22A:2969. doi: https://doi.org/10.1007/BF02650256 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations