Journal of Materials Science

, Volume 43, Issue 22, pp 7203–7209 | Cite as

Calculation of the viscosity of liquid Ag- and Au-based alloys: a pseudopotential approach

  • Peter TerzieffEmail author


The viscosity of liquid alloys of Ag–In, Ag–Ge, Ag–Sn, Ag–Sb, and Au–Sn is analyzed in terms of a pseudo-potential method with special emphasis on its variation with the composition. The computational problems associated with the divergence of the key quantities of the theory are solved by presuming the oscillating part of the effective potential to decay exponentially with the distance. The disregard of the influence from neighbor atoms at distances of more than 10 times the hard core diameter is not believed to have an essential impact on the results. All systems under investigation show negative deviations from the additive law which complies well with the experimental findings. The predictions from a semi-empirical model based on simple physical quantities are also taken into consideration. The good overall agreement suggests that the semi-empirical model offers a useful, in many circumstances, more accessible alternative.


Effective Potential Hard Core Full Calculation Experimental Viscosity Polyvalent Metal 


  1. 1.
    Iida T, Ueda M, Morita Z (1977) Tetsu to Hagane 62(1976):1169Google Scholar
  2. 2.
    Morita Z, lida T, Ueda M (1977) Inst Phys Conf Ser 30:600Google Scholar
  3. 3.
    Moelwyn-Huges EA (1964) Physical chemistry. Pergamon Press, OxfordGoogle Scholar
  4. 4.
    Terzieff P (2006) J Alloys Comp 453:133Google Scholar
  5. 5.
    Terzieff P, J Alloys Compd, accepted for publication. doi: CrossRefGoogle Scholar
  6. 6.
    Rice SA, Alnatt AR (1961) J Chem Phys 34:2144. doi: CrossRefGoogle Scholar
  7. 7.
    Bachelet GB, Hamann DR, Schlüter M (1982) Phys Rev B 26:4199. doi: CrossRefGoogle Scholar
  8. 8.
    Kitajima M, Saito K, Shimoji M (1976) Trans Jpn Inst Metab 17:382Google Scholar
  9. 9.
    Bhuiyan GM, Ali I, Mujibur Rahman SM (2003) Physica B 334:147. doi: CrossRefGoogle Scholar
  10. 10.
    Bhuiyan EH, Zianddin Ahmed AZ, Bhuiyan GM, Shahjahan M (2008) Physica B 403:1695. doi: CrossRefGoogle Scholar
  11. 11.
    Lebowitz JL (1967) Phys Rev 133(1964):4895Google Scholar
  12. 12.
    Ashcroft NW, Langreth DC (1967) Phys Rev 156:685. doi: CrossRefGoogle Scholar
  13. 13.
    Protopapas P, Parlee NAD (1975) Chem Phys 11:201. doi: CrossRefGoogle Scholar
  14. 14.
    Hultgren R, Desai PD, Hawkins DT, Gleiser M, Kelley KK (1973) Selected values of the thermodynamic properties binary alloys. American Society of Metals, Metals Park OhioGoogle Scholar
  15. 15.
    Kitajima M (1976) Thesis, Hokkaido UniversityGoogle Scholar
  16. 16.
  17. 17.
    Bretonnet JL, Silbert M (1992) Phys Chem Liq 24(1992):169CrossRefGoogle Scholar
  18. 18.
    Bretonnet JL, Bhuiyan GM, Silbert M (1992) J Phys Condens Matter 4:5359. doi: CrossRefGoogle Scholar
  19. 19.
    Iida T (1970) Thesis, Tohthoku UniversityGoogle Scholar
  20. 20.
    Iida T, Guthrie RIL (1988) The physical properties of liquid metals. Claredon Press, OxfordGoogle Scholar
  21. 21.
    Battezzati L, Greer AL (1989) Acta Metall 37:1791. doi: CrossRefGoogle Scholar
  22. 22.
    Gebhardt E, Becker M (1951) Z Metallkd 42:111Google Scholar
  23. 23.
    Martin-Garin L, Martin-Garin R, Desre P (1978) J Less Common Met 59:1. doi: CrossRefGoogle Scholar
  24. 24.
    Gebhardt E, Becker M, Tragner E (1953) Z Metallkd 44:379Google Scholar
  25. 25.
    Nakajima H (1976) Trans Jpn Inst Metab 17:403CrossRefGoogle Scholar
  26. 26.
    Gebhardt E, Becker M, Köstlin K (1956) Z Metallkd 47:684Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Inorganic Chemistry/Materials ChemistryUniversity of ViennaViennaAustria

Personalised recommendations