Advertisement

Journal of Materials Science

, Volume 43, Issue 21, pp 6799–6833 | Cite as

Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review

  • San Ping Jiang
Review

Abstract

The high-temperature solid oxide fuel cell (SOFC) is the most efficient and environmentally friendly energy conversion technology to generate electricity from fuels such as hydrogen and natural gas as compared to the traditional thermal power generation plants. In the last 20–30 years, there has been significant progress in the materials development and stack technologies in SOFC. Among the electrode materials, lanthanum strontium manganite (LSM) perovskites, till today, are the most investigated and probably the most important electrode materials in SOFCs. The objective of this article is to review and update the development, understanding, and achievements of the LSM-based materials in SOFC. The structure, nonstoichiometry, defect model, and in particular the relation between the microstructure, their properties (electrical, thermal, mechanical, chemical, and interfacial), and electrochemical performance and performance stability are critically reviewed. Finally, challenges and prospects of LSM-based materials as cathodes for intermediate and low-temperature SOFCs are discussed.

Keywords

Solid Oxide Fuel Cell Cathodic Polarization Composite Cathode Oxygen Nonstoichiometry Electrode Polarization Resistance 

References

  1. 1.
    Yokokawa H, Sakai N, Horita T, Yamaji K, Brito ME (2005) Mater Res Soc Bull 30:591Google Scholar
  2. 2.
    Jiang SP, Chan SH (2004) J Mater Sci 39:4405. doi: https://doi.org/10.1023/B:JMSC.0000034135.52164.6b Google Scholar
  3. 3.
    Gorte RJ, Vohs JM, McIntosh S (2004) Solid State Ionics 175:1. doi: https://doi.org/10.1016/j.ssi.2004.09.036 Google Scholar
  4. 4.
    Adler SB (2004) Chem Rev 104:4791. doi: https://doi.org/10.1021/cr020724o Google Scholar
  5. 5.
    Fergus JW (2005) Mater Sci Eng A Struct Mater Prop Microstruct Process 397:271Google Scholar
  6. 6.
    De Jonghe LC, Jacobson CP, Visco SJ (2003) Annu Rev Mater Res 33:169. doi: https://doi.org/10.1146/annurev.matsci.33.041202.103842 Google Scholar
  7. 7.
    Ivers-Tiffee E, Weber A, Herbstritt D (2001) J Eur Ceram Soc 21:1805. doi: https://doi.org/10.1016/S0955-2219(01)00120-0 Google Scholar
  8. 8.
    Tofield BC, Scott WR (1974) J Solid State Chem 10:183. doi: https://doi.org/10.1016/0022-4596(74)90025-5 Google Scholar
  9. 9.
    Hammouche A, Siebert E, Hammou A (1989) Mater Res Bull 24:367. doi: https://doi.org/10.1016/0025-5408(89)90223-7 Google Scholar
  10. 10.
    Shannon RD (1976) Acta Crystallogr A 32:751. doi: https://doi.org/10.1107/S0567739476001551 CrossRefGoogle Scholar
  11. 11.
    Li Z, Behruzi M, Fuerst L, Stover D (1993) In: Singhal SC, Iwahara H (eds) SOFC-III. The Electrochemical Society, Inc., Pennington. p 171Google Scholar
  12. 12.
    Zhang ZT, Lin OY, Tang ZL (1995) In: Dokiya M, Tagawa H, Singhal SC (eds) SOFC-IV. The Electrochemical Society, Pennington, p 502Google Scholar
  13. 13.
    Zheng F, Pederson LR (1999) J Electrochem Soc 146:2810. doi: https://doi.org/10.1149/1.1392012 Google Scholar
  14. 14.
    Jiang SP, Love JG, Zhang JP, Hoang M, Ramprakash Y, Hughes AE et al (1999) Solid State Ionics 121:1. doi: https://doi.org/10.1016/S0167-2738(98)00295-1 Google Scholar
  15. 15.
    Mizusaki J, Tagawa H, Naraya K, Sasamoto T (1991) Solid State Ionics 49:111. doi: https://doi.org/10.1016/0167-2738(91)90076-N Google Scholar
  16. 16.
    Mizusaki J (1992) Solid State Ionics 52:79. doi: https://doi.org/10.1016/0167-2738(92)90093-5 Google Scholar
  17. 17.
    Mizusaki J, Mori N, Takai H, Yonemura Y, Minamiue H, Tagawa H et al (2000) Solid State Ionics 129:163. doi: https://doi.org/10.1016/S0167-2738(99)00323-9 Google Scholar
  18. 18.
    Mizusaki J, Yonemura Y, Kamata H, Ohyama K, Mori N, Takai H et al (2000) Solid State Ionics 132:167. doi: https://doi.org/10.1016/S0167-2738(00)00662-7 Google Scholar
  19. 19.
    Miyoshi S, Hong JO, Yashiro K, Kaimai A, Nigara Y, Kawamura K et al (2002) Solid State Ionics 154:257. doi: https://doi.org/10.1016/S0167-2738(02)00441-1 Google Scholar
  20. 20.
    van Roosmalen JAM, Cordfunke EHP, Helmholdt RB, Zandbergen HW (1994) J Solid State Chem 110:100. doi: https://doi.org/10.1006/jssc.1994.1141 Google Scholar
  21. 21.
    Mitchell JF, Argyriou DN, Potter CD, Hinks DG, Jorgensen JD, Bader SD (1996) Phys Rev B 54:6172. doi: https://doi.org/10.1103/PhysRevB.54.6172 Google Scholar
  22. 22.
    Alonso JA, Martinez-Lope MJ, Casais MT, MacManus-Driscoll JL, de Silva P, Cohen LF, Fernandez Diaz MT (1997) J Mater Chem 7:2139. doi: https://doi.org/10.1039/a704088a Google Scholar
  23. 23.
    Nowotny J, Rekas M (1998) J Am Ceram Soc 81:67Google Scholar
  24. 24.
    Huang Q, Santoro A, Lynn JW, Erwin RW, Borchers JA, Peng JL et al (1997) Phys Rev B 55:14987. doi: https://doi.org/10.1103/PhysRevB.55.14987 Google Scholar
  25. 25.
    De Souza RA, Islam MS, Ivers-Tiffee E (1999) J Mater Chem 9:1621. doi: https://doi.org/10.1039/a901512d Google Scholar
  26. 26.
    van Roosmalen JAM, Cordfunke EHP (1994) J Solid State Chem 110:109. doi: https://doi.org/10.1006/jssc.1994.1143 Google Scholar
  27. 27.
    van Roosmalen JAM, Cordfunke EHP (1994) J Solid State Chem 110:113. doi: https://doi.org/10.1006/jssc.1994.1144 Google Scholar
  28. 28.
    van Roosmalen JAM, Cordfunke EHP (1994) J Solid State Chem 110:106. doi: https://doi.org/10.1006/jssc.1994.1142 Google Scholar
  29. 29.
    Nakamura K, Xu MX, Klaser M, Linker G (2001) J Solid State Chem 156:143. doi: https://doi.org/10.1006/jssc.2000.8974 Google Scholar
  30. 30.
    Nakamura K, Ogawa K (2002) J Solid State Chem 163:65. doi: https://doi.org/10.1006/jssc.2001.9370 Google Scholar
  31. 31.
    Alonso JA, MartinezLope MJ, Casais MT (1996) Eur J Solid State Inorg Chem 33:331Google Scholar
  32. 32.
    Miyoshi S, Hong JO, Yashiro K, Kaimai A, Nigara Y, Kawamura K et al (2003) Solid State Ionics 161:209. doi: https://doi.org/10.1016/S0167-2738(03)00281-9 Google Scholar
  33. 33.
    Kuo JH, Anderson HU, Sparlin DM (1989) J Solid State Chem 83:52. doi: https://doi.org/10.1016/0022-4596(89)90053-4 Google Scholar
  34. 34.
    Kuo JH, Anderson HU, Sparlin DM (1990) J Solid State Chem 87:55. doi: https://doi.org/10.1016/0022-4596(90)90064-5 Google Scholar
  35. 35.
    Kamata H, Yonemura Y, Mizusaki J, Tagawa H, Naraya K, Sasamoto T (1995) J Phys Chem Solids 56:943. doi: https://doi.org/10.1016/0022-3697(95)00019-4 Google Scholar
  36. 36.
    Yasumoto K, Shiono M, Tagawa H, Dokiya M, Hirano K, Mizusaki J (2002) J Electrochem Soc 149:A531. doi: https://doi.org/10.1149/1.1463400 Google Scholar
  37. 37.
    Yasumoto K, Mori N, Mizusaki J, Tagawa H, Dokiya M (2001) J Electrochem Soc 148:A105. doi: https://doi.org/10.1149/1.1344524 Google Scholar
  38. 38.
    Lee HY, Cho WS, Oh SM, Wiemhofer HD, Gopel W (1995) J Electrochem Soc 142:2659. doi: https://doi.org/10.1149/1.2050070 Google Scholar
  39. 39.
    Hammouche A, Siebert E, Hammou A, Kleitz M, Caneiro A (1991) J Electrochem Soc 138:1212. doi: https://doi.org/10.1149/1.2085761 Google Scholar
  40. 40.
    Chen XJ, Chan SH, Khor KA (2004) Electrochem Solid-State Lett 7:A144. doi: https://doi.org/10.1149/1.1701584 Google Scholar
  41. 41.
    Wang W, Jiang SP (2006) Solid State Ionics 177:1361. doi: https://doi.org/10.1016/j.ssi.2006.05.022 Google Scholar
  42. 42.
    Jiang SP, Love JG (2001) Solid State Ionics 138:183. doi: https://doi.org/10.1016/S0167-2738(00)00806-7 Google Scholar
  43. 43.
    Caillol N, Pijolat M, Siebert E (2007) Appl Surf Sci 253:4641. doi: https://doi.org/10.1016/j.apsusc.2006.10.019 Google Scholar
  44. 44.
    Wu QH, Liu ML, Jaegermann W (2005) Mater Lett 59:1980. doi: https://doi.org/10.1016/j.matlet.2005.01.038 Google Scholar
  45. 45.
    Egdell RG, Harrison MR, Hill MD, Porte L, Wall G (1984) J Phys C Solid State Phys 17:2889. doi: https://doi.org/10.1088/0022-3719/17/16/008 Google Scholar
  46. 46.
    Kemp JP, Beal DJ, Cox PA (1990) J Solid State Chem 86:50. doi: https://doi.org/10.1016/0022-4596(90)90112-B Google Scholar
  47. 47.
    Howlett JF, Flavell WR, Thomas AG, Hollingworth J, Warren S, Hashim Z et al (1996) Faraday Discuss 105:337. doi: https://doi.org/10.1039/fd9960500337 Google Scholar
  48. 48.
    Jiang SP (2006) J Solid State Electrochem 11:93. doi: https://doi.org/10.1007/s10008-005-0076-9 Google Scholar
  49. 49.
    Hammouche A, Schouler EJL, Henault M (1988) Solid State Ionics 28:1205. doi: https://doi.org/10.1016/0167-2738(88)90358-X Google Scholar
  50. 50.
    Yokokawa H, Sakai N, Kawada T, Dokiya M (1990) Solid State Ionics 40–41:398. doi: https://doi.org/10.1016/0167-2738(90)90366-Y Google Scholar
  51. 51.
    Otoshi S, Sasaki H, Ohnishi H, Hase M, Ishimaru K, Ippommatsu M et al (1991) J Electrochem Soc 138:1519. doi: https://doi.org/10.1149/1.2085819 Google Scholar
  52. 52.
    Mattiot FP, Giunta G, Selvaggi A (1994) In: Uossel U (ed) First European SOFC forum. European Fuel Cell Group, Ltd, Lucerne, p 735Google Scholar
  53. 53.
    Jiang SP, Love JG, Apateanu L (2003) Solid State Ionics 160:15. doi: https://doi.org/10.1016/S0167-2738(03)00127-9 Google Scholar
  54. 54.
    Aruna ST, Muthuraman M, Patil KC (1997) J Mater Chem 7:2499. doi: https://doi.org/10.1039/a703901h Google Scholar
  55. 55.
    Mori M, Hiei Y, Sammes NM, Tompsett GA (1999) In: Singhal S, Dokiya M (eds) SOFC-VI. The Electrochemical Society, Inc., Pennington, p 347Google Scholar
  56. 56.
    Anderson HU (1992) Solid State Ionics 52:33. doi: https://doi.org/10.1016/0167-2738(92)90089-8 Google Scholar
  57. 57.
    Minh NQ (1993) J Am Ceram Soc 76:563. doi: https://doi.org/10.1111/j.1151-2916.1993.tb03645.x Google Scholar
  58. 58.
    Berenov A, Wood H, Atkinson A (2007) ECS Trans 7:1173. doi: https://doi.org/10.1149/1.2729216 Google Scholar
  59. 59.
    Kuharuangrong S, Dechakupt T, Aungkavattana P (2004) Mater Lett 58:1964. doi: https://doi.org/10.1016/j.matlet.2003.12.011 Google Scholar
  60. 60.
    Sakaki Y, Takeda Y, Kato A, Imanishi N, Yamamoto O, Hattori M et al (1999) Solid State Ionics 118:187. doi: https://doi.org/10.1016/S0167-2738(98)00440-8 Google Scholar
  61. 61.
    Kostogloudis GC, Ftikos C (1999) J Eur Ceram Soc 19:497. doi: https://doi.org/10.1016/S0955-2219(98)00221-0 Google Scholar
  62. 62.
    Rim HR, Jeung SK, Jung E, Lee JS (1998) Mater Chem Phys 52:54. doi: https://doi.org/10.1016/S0254-0584(98)80006-0 Google Scholar
  63. 63.
    Kostogloudis GC, Vasilakos N, Ftikos C (1997) J Eur Ceram Soc 17:1513. doi: https://doi.org/10.1016/S0955-2219(97)00038-1 Google Scholar
  64. 64.
    Yoon HS, Choi SW, Lee D, Kim BH (2001) J Power Sources 93:1. doi: https://doi.org/10.1016/S0378-7753(00)00504-8 Google Scholar
  65. 65.
    Phillipps MB, Sammes NM, Yamamoto O (1999) Solid State Ionics 123:131. doi: https://doi.org/10.1016/S0167-2738(99)00082-X Google Scholar
  66. 66.
    Hashimoto S, Iwahara H (2000) J Electroceram 4:225. doi: https://doi.org/10.1023/A:1009936515152 Google Scholar
  67. 67.
    Wandekar RV, Wani BN, Bharadwaj SR (2005) Mater Lett 59:2799. doi: https://doi.org/10.1016/j.matlet.2005.03.062 Google Scholar
  68. 68.
    Kuharuangrong S (2004) Ceram Int 30:273. doi: https://doi.org/10.1016/S0272-8842(03)00099-3 Google Scholar
  69. 69.
    Moure C, Gutierrez D, Tartaj J, Duran P (2003) J Eur Ceram Soc 23:729. doi: https://doi.org/10.1016/S0955-2219(02)00165-6 Google Scholar
  70. 70.
    Nasrallah MM, Carter JD, Anderson HU, Koc R (1991) In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) SOFC-II. Commission of the European Communities, Luxemburg, p 637Google Scholar
  71. 71.
    Jiang SP, Liu L, Ong KP, Wu P, Li J, Pu J (2008) J Power Sources 176:82Google Scholar
  72. 72.
    Kim JD, Kim GD, Moon JW, Park YI, Lee WH, Kobayashi K et al (2001) Solid State Ionics 143:379. doi: https://doi.org/10.1016/S0167-2738(01)00877-3 Google Scholar
  73. 73.
    Ji Y, Kilner JA, Carolan MF (2005) Solid State Ionics 176:937. doi: https://doi.org/10.1016/j.ssi.2004.11.019 Google Scholar
  74. 74.
    Yang CCT, Wei WCJ, Roosen A (2003) Mater Chem Phys 81:134. doi: https://doi.org/10.1016/S0254-0584(03)00158-5 Google Scholar
  75. 75.
    Carter S, Selcuk A, Chater RJ, Kajda J, Kilner JA, Steele BCH (1992) Solid State Ionics 53–56:597. doi: https://doi.org/10.1016/0167-2738(92)90435-R Google Scholar
  76. 76.
    De Souza RA, Kilner JA, Walker JF (2000) Mater Lett 43:43. doi: https://doi.org/10.1016/S0167-577X(99)00228-1 Google Scholar
  77. 77.
    Berenov AV, MacManus-Driscoll JL, Kilner JA (1999) Solid State Ionics 122:41. doi: https://doi.org/10.1016/S0167-2738(99)00077-6 Google Scholar
  78. 78.
    Horita T, Tsunoda T, Yamaji K, Sakai N, Kato T, Yokokawa H (2002) Solid State Ionics 152:439. doi: https://doi.org/10.1016/S0167-2738(02)00367-3 Google Scholar
  79. 79.
    Horita T, Yamaji K, Ishikawa M, Sakai N, Yokokawa H, Kawada T et al (1998) J Electrochem Soc 145:3196. doi: https://doi.org/10.1149/1.1838786 Google Scholar
  80. 80.
    Yasuda I, Ogasawara K, Hishinuma M, Kawada T, Dokiya M (1996) Solid State Ionics 86–88:1197. doi: https://doi.org/10.1016/0167-2738(96)00287-1 Google Scholar
  81. 81.
    Yamahara K, Sholklapper TZ, Jacobson CP, Visco SJ, De Jonghe LC (2005) Solid State Ionics 176:1359. doi: https://doi.org/10.1016/j.ssi.2005.03.010 Google Scholar
  82. 82.
    Belzner A, Gur TM, Huggins RA (1992) Solid State Ionics 57:327. doi: https://doi.org/10.1016/0167-2738(92)90166-M Google Scholar
  83. 83.
    Lade K, Jacobsen T (1994) Solid State Ionics 72:218. doi: https://doi.org/10.1016/0167-2738(94)90150-3 Google Scholar
  84. 84.
    Badwal SPS, Jiang SP, Love J, Nowotny J, Rekas M, Vance ER (2001) Ceram Int 27:431. doi: https://doi.org/10.1016/S0272-8842(00)00098-5 Google Scholar
  85. 85.
    Badwal SPS, Jiang SP, Love J, Nowotny J, Rekas M, Vance ER (2001) Ceram Int 27:419. doi: https://doi.org/10.1016/S0272-8842(00)00097-3 Google Scholar
  86. 86.
    Kopp A, Nafe H, Weppner W (1992) Solid State Ionics 53–56:853. doi: https://doi.org/10.1016/0167-2738(92)90265-Q Google Scholar
  87. 87.
    Endo A, Ihara M, Komiyama H, Yamada K (1996) Solid State Ionics 86–88:1191. doi: https://doi.org/10.1016/0167-2738(96)00286-X Google Scholar
  88. 88.
    Ullmann H, Trofimenko N, Tietz F, Stover D, Ahmad-Khanlou A (2000) Solid State Ionics 138:79. doi: https://doi.org/10.1016/S0167-2738(00)00770-0 Google Scholar
  89. 89.
    Godoi GS, de Souza DPF (2007) Mater Sci Eng B Solid State Mater Adv Technol 140:90Google Scholar
  90. 90.
    Jiang SP (2002) Solid State Ionics 146:1. doi: https://doi.org/10.1016/S0167-2738(01)00997-3 Google Scholar
  91. 91.
    Meixner DL, Cutler RA (2002) Solid State Ionics 146:273. doi: https://doi.org/10.1016/S0167-2738(01)01027-X Google Scholar
  92. 92.
    Atkinson A, Selcuk A (2000) Solid State Ionics 134:59. doi: https://doi.org/10.1016/S0167-2738(00)00714-1 Google Scholar
  93. 93.
    D’Souza CM, Sammes NM (2000) J Am Ceram Soc 83:47. doi: https://doi.org/10.1111/j.1151-2916.2000.tb01146.x Google Scholar
  94. 94.
    Meixner DL, Cutler RA (2002) Solid State Ionics 146:285. doi: https://doi.org/10.1016/S0167-2738(01)01028-1 Google Scholar
  95. 95.
    Yokokawa H, Sakai N, Kawada T, Dokiya M (1991) J Electrochem Soc 138:2719. doi: https://doi.org/10.1149/1.2086043 Google Scholar
  96. 96.
    Yokokawa H, Horita T, Sakai N, Dokiya M, Kawada T (1996) Solid State Ionics 86–88:1161. doi: https://doi.org/10.1016/0167-2738(96)00281-0 Google Scholar
  97. 97.
    Yokokawa H, Sakai N, Kawada T, Dokiya M (1993) In: Badwal SPS, Bannister MJ, Hannink RHJ (eds) Science and technology of zirconia V. Technomic Publishing Company, Inc., Melbourne, p 752Google Scholar
  98. 98.
    Yokokawa H (2003) Annu Rev Mater Res 33:581. doi: https://doi.org/10.1146/annurev.matsci.33.022802.093856 Google Scholar
  99. 99.
    Tsai T, Barnett SA (1997) Solid State Ionics 93:207. doi: https://doi.org/10.1016/S0167-2738(96)00524-3 Google Scholar
  100. 100.
    Mitterdorfer A, Gauckler LJ (1998) Solid State Ionics 111:185. doi: https://doi.org/10.1016/S0167-2738(98)00195-7 Google Scholar
  101. 101.
    Stochniol G, Syskakis E, Naoumidis A (1995) J Am Ceram Soc 78:929. doi: https://doi.org/10.1111/j.1151-2916.1995.tb08416.x Google Scholar
  102. 102.
    Lau SK, Singhal SC (1985) In: Corrosion 85. The National Association of Corrosion Engineers, Houston, p 1Google Scholar
  103. 103.
    Brugnoni C, Ducati U, Scagliotti M (1995) Solid State Ionics 76:177. doi: https://doi.org/10.1016/0167-2738(94)00299-8 Google Scholar
  104. 104.
    Taimatsu H, Wada K, Kaneko H, Yamamura H (1992) J Am Ceram Soc 75:401. doi: https://doi.org/10.1111/j.1151-2916.1992.tb08193.x Google Scholar
  105. 105.
    Tricker DM, Stobbs WM (1993) In: Poulsen FW, Bentzen JJ, Jacobsen T, Skou E, Ostergard MJL (eds) 14th Riso international symposium on materials science: high temperature electrochemical behaviour of fast ion and mixed conductors. Riso National Laboratory, Roskilde, p 453Google Scholar
  106. 106.
    Jiang SP, Zhang JP, Ramprakash Y, Milosevic D, Wilshier K (2000) J Mater Sci 35:2735. doi: https://doi.org/10.1023/A:1004766212164 Google Scholar
  107. 107.
    Kenjo T, Nishiya M (1992) Solid State Ionics 57:295. doi: https://doi.org/10.1016/0167-2738(92)90161-H Google Scholar
  108. 108.
    Yamamoto O, Takeda Y, Kanno R, Kojima T (1989) In: Singhal SC (ed) SOFC-I. The Electrochemical Society, Inc., Pennington, p 242Google Scholar
  109. 109.
    Mori M, Abe T, Itoh H, Yamamoto O, Shen GQ, Takeda Y et al (1999) Solid State Ionics 123:113. doi: https://doi.org/10.1016/S0167-2738(99)00115-0 Google Scholar
  110. 110.
    Jiang SP, Zhang JP, Foger K (2003) J Eur Ceram Soc 23:1865. doi: https://doi.org/10.1016/S0955-2219(02)00447-8 Google Scholar
  111. 111.
    Kawada T, Sakai N, Yokokawa H, Dokiya M, Anzai I (1992) Solid State Ionics 50:189. doi: https://doi.org/10.1016/0167-2738(92)90218-E Google Scholar
  112. 112.
    Waller D, Sirman JD, Kilner JA (1997) In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC-V. The Electrochemical Society, Inc., PenningtonGoogle Scholar
  113. 113.
    Clausen C, Bagger C, Bildesorensen JB, Horsewell A (1994) Solid State Ionics 70:59. doi: https://doi.org/10.1016/0167-2738(94)90287-9 Google Scholar
  114. 114.
    Yamamoto O, Shen GQ, Takeda Y, Imanishi N, Sakaki Y (1991) In: SOFC-II. The Electrochemical Society, Inc., Pennington, p 158Google Scholar
  115. 115.
    van Roosmalen JAM, Cordfunke EHP (1992) Solid State Ionics 52:303. doi: https://doi.org/10.1016/0167-2738(92)90177-Q Google Scholar
  116. 116.
    Zhang JP, Jiang SP, Love JG, Foger K, Badwal SPS (1998) J Mater Chem 8:2787. doi: https://doi.org/10.1039/a805835k Google Scholar
  117. 117.
    Khandkar A, Elangovan S, Liu M (1992) Solid State Ionics 52:57. doi: https://doi.org/10.1016/0167-2738(92)90091-3 Google Scholar
  118. 118.
    Mitsuyasu H, Eguchi K, Arai H (1997) Solid State Ionics 100:11. doi: https://doi.org/10.1016/S0167-2738(97)00343-3 Google Scholar
  119. 119.
    Labrincha JA, Frade JR, Marques FMB (1993) J Mater Sci 28:3809. doi: https://doi.org/10.1007/BF00353183 Google Scholar
  120. 120.
    Wagner C (1933) Z Phys Chem B 21:25Google Scholar
  121. 121.
    Poulsen FW, Vanderpuil N (1992) Solid State Ionics 53–56:777Google Scholar
  122. 122.
    Ciacchi FT, Crane KM, Badwal SPS (1994) Solid State Ionics 73:49. doi: https://doi.org/10.1016/0167-2738(94)90263-1 Google Scholar
  123. 123.
    Takeda Y, Tu HY, Sakaki H, Watanabe S, Imanishi N, Yamamoto O et al (1997) J Electrochem Soc 144:2810. doi: https://doi.org/10.1149/1.1837899 Google Scholar
  124. 124.
    Huang KQ, Feng M, Goodenough JB, Schmerling M (1996) J Electrochem Soc 143:3630. doi: https://doi.org/10.1149/1.1837262 Google Scholar
  125. 125.
    Naoumidis A, Ahmad-Khanlou A, Samardzija Z, Kolar D (1999) Fresenius J Anal Chem 365:277. doi: https://doi.org/10.1007/s002160051488 Google Scholar
  126. 126.
    Pelosato R, Sora IN, Dotelli G, Ruffo R, Mari CM (2005) J Eur Ceram Soc 25:2587. doi: https://doi.org/10.1016/j.jeurceramsoc.2005.03.107 Google Scholar
  127. 127.
    Ullmann H, Trofimenko N, Naoumidis A, Stover D (1999) J Eur Ceram Soc 19:791. doi: https://doi.org/10.1016/S0955-2219(98)00315-X Google Scholar
  128. 128.
    Badwal SPS, Deller R, Foger K, Ramprakash Y, Zhang JP (1997) Solid State Ionics 99:297. doi: https://doi.org/10.1016/S0167-2738(97)00247-6 Google Scholar
  129. 129.
    Taniguchi S, Kadowaki M, Kawamura H, Yasuo T, Akiyama Y, Miyake Y et al (1995) J Power Sources 55:73. doi: https://doi.org/10.1016/0378-7753(94)02172-Y Google Scholar
  130. 130.
    Paulson SC, Birss VI (2004) J Electrochem Soc 151:A1961. doi: https://doi.org/10.1149/1.1806392 Google Scholar
  131. 131.
    Matsuzaki Y, Yasuda I (2000) Solid State Ionics 132:271. doi: https://doi.org/10.1016/S0167-2738(00)00654-8 Google Scholar
  132. 132.
    Matsuzaki Y, Yasuda I (2001) J Electrochem Soc 148:A126. doi: https://doi.org/10.1149/1.1339869 Google Scholar
  133. 133.
    Hilpert K, Das D, Miller M, Peck DH, Weiss R (1996) J Electrochem Soc 143:3642. doi: https://doi.org/10.1149/1.1837264 Google Scholar
  134. 134.
    Konysheva E, Penkalla H, Wessel E, Mertens J, Seeling U, Singheiser L et al (2006) J Electrochem Soc 153:A765. doi: https://doi.org/10.1149/1.2172563 Google Scholar
  135. 135.
    Jiang SP, Zhang JP, Foger K (2001) J Electrochem Soc 148:C447. doi: https://doi.org/10.1149/1.1374446 Google Scholar
  136. 136.
    Jiang SP, Zhang JP, Apateanu L, Foger K (1999) Electrochem Commun 1:394. doi: https://doi.org/10.1016/S1388-2481(99)00080-6 Google Scholar
  137. 137.
    Jiang SP, Zhang JP, Apateanu L, Foger K (2000) J Electrochem Soc 147:4013. doi: https://doi.org/10.1149/1.1394012 Google Scholar
  138. 138.
    Jiang SP, Zhang JP, Zheng XG (2002) J Eur Ceram Soc 22:361. doi: https://doi.org/10.1016/S0955-2219(01)00280-1 Google Scholar
  139. 139.
    Jiang SP, Zhang S, Zhen YD (2005) J Mater Res 20:747. doi: https://doi.org/10.1557/JMR.2005.0101 Google Scholar
  140. 140.
    Jiang SP, Wang W (2005) Electrochem Solid-State Lett 8:A115. doi: https://doi.org/10.1149/1.1847689 Google Scholar
  141. 141.
    Jiang SP, Zhen YD, Zhang S (2006) J Electrochem Soc 153:A1511. doi: https://doi.org/10.1149/1.2207060 Google Scholar
  142. 142.
    Quadakkers WJ, Greiner H, Hansel M, Pattanaik A, Khanna AS, Mallener W (1996) Solid State Ionics 91:55. doi: https://doi.org/10.1016/S0167-2738(96)00425-0 Google Scholar
  143. 143.
    Zhen YD, Jiang SP, Zhang S, Tan V (2006) J Eur Ceram Soc 26:3253. doi: https://doi.org/10.1016/j.jeurceramsoc.2005.10.002 Google Scholar
  144. 144.
    Kim JH, Song RH, Hyun SH (2004) Solid State Ionics 174:185. doi: https://doi.org/10.1016/j.ssi.2004.07.032 Google Scholar
  145. 145.
    Fujita K, Ogasawara K, Matsuzaki Y, Sakurai T (2004) J Power Sources 131:261. doi: https://doi.org/10.1016/j.jpowsour.2003.12.051 Google Scholar
  146. 146.
    Huang KQ, Hou PY, Goodenough JB (2000) Solid State Ionics 129:237. doi: https://doi.org/10.1016/S0167-2738(99)00329-X Google Scholar
  147. 147.
    Chen X, Hou PY, Jacobson CP, Visco SJ, De Jonghe LC (2005) Solid State Ionics 176:425. doi: https://doi.org/10.1016/j.ssi.2004.10.004 Google Scholar
  148. 148.
    Li JQ, Xiao P (2001) J Eur Ceram Soc 21:659. doi: https://doi.org/10.1016/S0955-2219(00)00242-9 Google Scholar
  149. 149.
    Lahl N, Singheiser L, Hilpert K (1999) In: Singhal SC, Dokiya M (eds) SOFC-VI. The Electrochemical Society, Inc., Pennington, p 1057Google Scholar
  150. 150.
    Gunther C, Hofer G, Kleinlein W (1997) In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC-V. The Electrochemical Society, Inc., Pennington, p 746Google Scholar
  151. 151.
    Jiang SP, Christiansen L, Hughan B, Foger K (2001) J Mater Sci Lett 20:695. doi: https://doi.org/10.1023/A:1010950722533 Google Scholar
  152. 152.
    van Heuveln FH, Bouwmeester HJM (1997) J Electrochem Soc 144:134. doi: https://doi.org/10.1149/1.1837375 Google Scholar
  153. 153.
    Chen XJ, Khor KA, Chan SH (2004) Solid State Ionics 167:379. doi: https://doi.org/10.1016/j.ssi.2003.08.049 Google Scholar
  154. 154.
    Kikuchi R, Murakami K, Futamura M, Matsui T, Eguchi K (2007) ECS Trans 7:1251. doi: https://doi.org/10.1149/1.2729226 Google Scholar
  155. 155.
    McEvoy AJ (2000) Solid State Ionics 135:331. doi: https://doi.org/10.1016/S0167-2738(00)00460-4 Google Scholar
  156. 156.
    Haanappel VAC, Mai A, Mertens J (2006) Solid State Ionics 177:2033. doi: https://doi.org/10.1016/j.ssi.2005.12.038 Google Scholar
  157. 157.
    Leng YJ, Chan SH, Khor KA, Jiang SP (2004) J Appl Electrochem 34:409. doi: https://doi.org/10.1023/B:JACH.0000016627.29374.24 Google Scholar
  158. 158.
    Lee YK, Kim JY, Lee YK, Kim I, Moon HS, Park JW et al (2003) J Power Sources 115:219. doi: https://doi.org/10.1016/S0378-7753(02)00727-9 Google Scholar
  159. 159.
    McIntosh S, Adler SB, Vohs JM, Gorte RJ (2004) Electrochem Solid-State Lett 7:A111. doi: https://doi.org/10.1149/1.1667792 Google Scholar
  160. 160.
    Tsukuda H, Yamashita H (1994) In: Bossel U (ed) First European SOFC forum. European Fuel Cells Group, Lucerne, p 715Google Scholar
  161. 161.
    Kuznecov M, Otschik P, Obenaus P, Eichler K, Schaffrath W (2003) Solid State Ionics 157:371. doi: https://doi.org/10.1016/S0167-2738(02)00235-7 Google Scholar
  162. 162.
    Wang W, Jiang SP (2004) J Solid State Electrochem 8:914. doi: https://doi.org/10.1007/s10008-004-0515-z Google Scholar
  163. 163.
    Jiang SP, Love JG (2003) Solid State Ionics 158:45. doi: https://doi.org/10.1016/S0167-2738(02)00760-9 Google Scholar
  164. 164.
    Siebert E, Hammouche A, Kleitz M (1995) Electrochim Acta 40:1741. doi: https://doi.org/10.1016/0013-4686(94)00361-4 Google Scholar
  165. 165.
    Jiang Y, Wang SZ, Zhang YH, Yan JW, Li WZ (1998) J Electrochem Soc 145:373. doi: https://doi.org/10.1149/1.1838271 Google Scholar
  166. 166.
    Gharbage B, Pagnier T, Hammou A (1994) J Electrochem Soc 141:2118. doi: https://doi.org/10.1149/1.2055071 Google Scholar
  167. 167.
    Jiang SP, Zhang JP, Foger K (2000) J Electrochem Soc 147:3195. doi: https://doi.org/10.1149/1.1393883 Google Scholar
  168. 168.
    Jiang SP, Love JG, Ramprakash Y (2002) J Power Sources 110:201. doi: https://doi.org/10.1016/S0378-7753(02)00259-8 Google Scholar
  169. 169.
    Mizusaki J, Tagawa H, Tsuneyoshi K, Sawata A (1991) J Electrochem Soc 138:1867. doi: https://doi.org/10.1149/1.2085891 Google Scholar
  170. 170.
    van Heuveln FH, Bouwmeester HJM, van Berkel FPF (1997) J Electrochem Soc 144:126. doi: https://doi.org/10.1149/1.1837374 Google Scholar
  171. 171.
    Fukunaga H, Ihara M, Sakaki K, Yamada K (1996) Solid State Ionics 86–88:1179. doi: https://doi.org/10.1016/0167-2738(96)00284-6 Google Scholar
  172. 172.
    Sasaki K, Gauckler LJ (1996) Denki Kagaku 64:654Google Scholar
  173. 173.
    Sasaki K, Wurth JP, Gschwend R, Godickemeier M, Gauckler LJ (1996) J Electrochem Soc 143:530. doi: https://doi.org/10.1149/1.1836476 Google Scholar
  174. 174.
    Lee HK (2002) Mater Chem Phys 77:639. doi: https://doi.org/10.1016/S0254-0584(02)00091-3 Google Scholar
  175. 175.
    Yamamoto O, Takeda Y, Kanno R, Noda M (1987) Solid State Ionics 22:241. doi: https://doi.org/10.1016/0167-2738(87)90039-7 Google Scholar
  176. 176.
    Takeda Y, Kanno R, Noda M, Tomida Y, Yamamoto O (1987) J Electrochem Soc 134:2656. doi: https://doi.org/10.1149/1.2100267 Google Scholar
  177. 177.
    Ishihara T, Kudo T, Matsuda H, Takita Y (1994) J Am Ceram Soc 77:1682. doi: https://doi.org/10.1111/j.1151-2916.1994.tb09779.x Google Scholar
  178. 178.
    Ishihara T, Kudo T, Matsuda H, Takita Y (1995) J Electrochem Soc 142:1519. doi: https://doi.org/10.1149/1.2048606 Google Scholar
  179. 179.
    Huang XQ, Liu J, Lu Z, Liu W, Pei L, He TM et al (2000) Solid State Ionics 130:195. doi: https://doi.org/10.1016/S0167-2738(00)00643-3 Google Scholar
  180. 180.
    Hayashi K, Yamamoto O, Nishigaki Y, Minoura H (1997) Solid State Ionics 98:49. doi: https://doi.org/10.1016/S0167-2738(97)00098-2 Google Scholar
  181. 181.
    Xia CR, Zhang YL, Liu ML (2003) Electrochem Solid-State Lett 6:A290. doi: https://doi.org/10.1149/1.1621830 Google Scholar
  182. 182.
    Choi JH, Jang JH, Oh SM (2001) Electrochim Acta 46:867. doi: https://doi.org/10.1016/S0013-4686(00)00666-6 Google Scholar
  183. 183.
    Jorgensen MJ, Primdahl S, Bagger C, Mogensen M (2001) Solid State Ionics 139:1. doi: https://doi.org/10.1016/S0167-2738(00)00818-3 Google Scholar
  184. 184.
    Barbucci A, Viviani M, Carpanese P, Vladikova D, Stoynov Z (2006) Electrochim Acta 51:1641. doi: https://doi.org/10.1016/j.electacta.2005.02.106 Google Scholar
  185. 185.
    Co AC, Xia SJ, Birss VI (2005) J Electrochem Soc 152:A570. doi: https://doi.org/10.1149/1.1859612 Google Scholar
  186. 186.
    Kamata H, Hosaka A, Mizusaki J, Tagawa H (1998) Solid State Ionics 106:237. doi: https://doi.org/10.1016/S0167-2738(97)00495-5 Google Scholar
  187. 187.
    Zhen YD, Jiang SP (2006) J Electrochem Soc 153:A2245. doi: https://doi.org/10.1149/1.2357712 Google Scholar
  188. 188.
    Suzuki T, Awano M, Jasinski P, Petrovsky V, Anderson HU (2006) Solid State Ionics 177:2071. doi: https://doi.org/10.1016/j.ssi.2005.12.016 Google Scholar
  189. 189.
    Murray EP, Tsai T, Barnett SA (1998) Solid State Ionics 110:235. doi: https://doi.org/10.1016/S0167-2738(98)00142-8 Google Scholar
  190. 190.
    Song HS, Kim WH, Hyun SH, Moon J, Kim J, Lee HW (2007) J Power Sources 167:258. doi: https://doi.org/10.1016/j.jpowsour.2007.01.095 Google Scholar
  191. 191.
    Murray EP, Barnett SA (2001) Solid State Ionics 143:265. doi: https://doi.org/10.1016/S0167-2738(01)00871-2 Google Scholar
  192. 192.
    Xia CR, Rauch W, Wellborn W, Liu ML (2002) Electrochem Solid-State Lett 5:A217. doi: https://doi.org/10.1149/1.1503203 Google Scholar
  193. 193.
    Zhao H, Huo LH, Gao S (2004) J Power Sources 125:149. doi: https://doi.org/10.1016/j.jpowsour.2003.07.009 Google Scholar
  194. 194.
    Yi JY, Choi GM (2004) J Eur Ceram Soc 24:1359. doi: https://doi.org/10.1016/S0955-2219(03)00569-7 Google Scholar
  195. 195.
    Armstrong TJ, Virkar AV (2002) J Electrochem Soc 149:A1565. doi: https://doi.org/10.1149/1.1517282 Google Scholar
  196. 196.
    Pena-Martinez J, Marrero-Lopez D, Ruiz-Morales JC, Buergler BE, Nunez P, Gauckler LJ (2006) J Power Sources 159:914. doi: https://doi.org/10.1016/j.jpowsour.2005.11.036 Google Scholar
  197. 197.
    Tanner CW, Fung KZ, Virkar AV (1997) J Electrochem Soc 144:21. doi: https://doi.org/10.1149/1.1837360 Google Scholar
  198. 198.
    Liu Y, Zha SW, Liu ML (2004) Adv Mater 16:256. doi: https://doi.org/10.1002/adma.200305767 Google Scholar
  199. 199.
    Jiang SP (2006) Mater Sci Eng A Struct Mater Prop Microstruct Process 418:199Google Scholar
  200. 200.
    Jiang SP, Wang W (2005) Solid State Ionics 176:1351. doi: https://doi.org/10.1016/j.ssi.2005.03.011 Google Scholar
  201. 201.
    Jiang SP, Wang W (2005) J Electrochem Soc 152:A1398. doi: https://doi.org/10.1149/1.1928167 Google Scholar
  202. 202.
    Yamahara K, Jacobson CP, Visco SJ, Zhang XF, de Jonghe LC (2005) Solid State Ionics 176:275. doi: https://doi.org/10.1016/j.ssi.2004.08.017 Google Scholar
  203. 203.
    Juhl M, Primdahl S, Manon C, Mogensen M (1996) J Power Sources 61:173. doi: https://doi.org/10.1016/S0378-7753(96)02361-0 Google Scholar
  204. 204.
    Holtappels P, Bagger C (2002) J Eur Ceram Soc 22:41. doi: https://doi.org/10.1016/S0955-2219(01)00238-2 Google Scholar
  205. 205.
    Liu Y, Compson C, Liu ML (2004) J Power Sources 138:194. doi: https://doi.org/10.1016/j.jpowsour.2004.06.035 Google Scholar
  206. 206.
    Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M (2000) Science 288:2031. doi: https://doi.org/10.1126/science.288.5473.2031 Google Scholar
  207. 207.
    Morel B, Roberge R, Savoie S, Napporn TW, Meunier M (2007) Appl Catal Gen 323:181. doi: https://doi.org/10.1016/j.apcata.2007.02.020 Google Scholar
  208. 208.
    Demin AK, Gulbis FY (2000) Solid State Ionics 135:451. doi: https://doi.org/10.1016/S0167-2738(00)00395-7 Google Scholar
  209. 209.
    van Heuveln FH (1994) J Electrochem Soc 141:3423. doi: https://doi.org/10.1149/1.2059348 Google Scholar
  210. 210.
    Tannenberger H, Siegert H (1969) Adv Chem Ser 90:281Google Scholar
  211. 211.
    Itagaki Y, Matsubara F, Asamoto M, Yamaura H, Yahiro H, Sadaoka Y (2007) ECS Trans 7:1319. doi: https://doi.org/10.1149/1.2729235 Google Scholar
  212. 212.
    Jiang SP (2003) J Power Sources 124:390. doi: https://doi.org/10.1016/S0378-7753(03)00814-0 Google Scholar
  213. 213.
    Jiang SP (2001) J Electrochem Soc 148:A887. doi: https://doi.org/10.1149/1.1383776 Google Scholar
  214. 214.
    Uchida H, Yoshida M, Watanabe M (1999) J Electrochem Soc 146:1. doi: https://doi.org/10.1149/1.1391555 Google Scholar
  215. 215.
    Tsai T, Barnett SA (1997) Solid State Ionics 98:191. doi: https://doi.org/10.1016/S0167-2738(97)00113-6 Google Scholar
  216. 216.
    Kawagoe Y, Namie S, Nomura M, Kumakura T, Shiozaki K, Nakajima Y (1997) In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC-V. The Electrochemical Society, Inc., Pennington, p 549Google Scholar
  217. 217.
    Lai TS, Barnett SA (2007) J Power Sources 164:742. doi: https://doi.org/10.1016/j.jpowsour.2006.10.075 Google Scholar
  218. 218.
    Jiang SP (2003) J Mater Sci 38:3775. doi: https://doi.org/10.1023/A:1025936317472 Google Scholar
  219. 219.
    Iwata T (1996) J Electrochem Soc 143:1521. doi: https://doi.org/10.1149/1.1836673 Google Scholar
  220. 220.
    Simwonis D, Tietz F, Stover D (2000) Solid State Ionics 132:241. doi: https://doi.org/10.1016/S0167-2738(00)00650-0 Google Scholar
  221. 221.
    Itoh H, Yamamoto T, Mori M, Horita T, Sakai N, Yokokawa H et al (1997) J Electrochem Soc 144:641. doi: https://doi.org/10.1149/1.1837460 Google Scholar
  222. 222.
    van Roosmalen JAM, Cordfunke EHP, Huijsmans JPP (1993) Solid State Ionics 66:285. doi: https://doi.org/10.1016/0167-2738(93)90418-3 Google Scholar
  223. 223.
    Stevenson JW, Hallman PF, Armstrong TR, Chick LA (1995) J Am Ceram Soc 78:507. doi: https://doi.org/10.1111/j.1151-2916.1995.tb08207.x Google Scholar
  224. 224.
    Katayama K, Ishihara T, Ohta H, Takeuchi SJ, Esaki Y, Inukai E (1989) Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi—J Ceram Soc Jpn 97:1327Google Scholar
  225. 225.
    Poirson A, Decorse P, Caboche G, Dufour LC (1997) Solid State Ionics 99:287. doi: https://doi.org/10.1016/S0167-2738(97)00260-9 Google Scholar
  226. 226.
    Mori M (2005) J Electrochem Soc 152:A732. doi: https://doi.org/10.1149/1.1864312 Google Scholar
  227. 227.
    Jorgensen MJ, Holtappels P, Appel CC (2000) J Appl Electrochem 30:411. doi: https://doi.org/10.1023/A:1003987318963 Google Scholar
  228. 228.
    Jiang SP, Wang W (2005) Solid State Ionics 176:1185. doi: https://doi.org/10.1016/j.ssi.2005.02.013 Google Scholar
  229. 229.
    Badwal S, Foger K (1998) In: Stevens P (ed) Third European SOFC forum. The European Fuel Cells Group, Lucerne, p 95Google Scholar
  230. 230.
    Tietz F (2004) In: Morgensen M (ed) Sixth European SOFC forum. The European Fuel Cells Group, Lucerne, p 289Google Scholar
  231. 231.
    Singhal SC (1997) In: Stimming U, Singhal SC, Tagawa H, Lehnert W (eds) SOFC-V. The Electrochemical Society, Inc., Pennington, p 37Google Scholar
  232. 232.
    Kusnezoff M, Trofimenko N, Mosch S, Beckert W, Graff A, Altmann F (2007) ECS Trans 7:1033. doi: https://doi.org/10.1149/1.2729199 Google Scholar
  233. 233.
    Weber A, Manner R, Jobst B, Schiele M, Cerva H, Waser R et al (1996) In: Poulson FW, Bonanos N, Linderoth S, Mogensen M, Zacharau-Christiansen B (eds) Seventeenth Riso international symposium on materials science: high temperature electrochemistry: ceramics and metals. Riso National Laboratory, Roskilde, p 473Google Scholar
  234. 234.
    Sholklapper TZ, Radmilovic V, Jacobson CP, Visco SJ, De Jonghe LC (2007) Electrochem Solid-State Lett 10:B74. doi: https://doi.org/10.1149/1.2434203 Google Scholar
  235. 235.
    Herbstritt D, Weber A, Ivers-Tiffee E (1999) In: Singhal SC, Dokiya M (eds) SOFC-VI. The Electrochemical Society, Inc., Honolulu, p 972Google Scholar
  236. 236.
    Bergsmark E, Furuseth S, Dyrlie O, Norby T, Kofstad P (1991) In: Grosz F, Zegers P, Singhal SC, Yamamoto O (eds) SOFC-II. Commission of the European Communities, Luxembourg, p 473Google Scholar
  237. 237.
    Liang FL, Chen J, Cheng JL, Jiang SP, He TM, Pu J et al (2008) Electrochem Commun 10:42. doi: https://doi.org/10.1016/j.elecom.2007.10.016 Google Scholar
  238. 238.
    Ralph JM, Schoeler AC, Krumpelt M (2001) J Mater Sci 36:1161. doi: https://doi.org/10.1023/A:1004881825710 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations