Journal of Materials Science

, Volume 43, Issue 23–24, pp 7313–7319 | Cite as

Tailoring structures through two-step annealing process in nanostructured aluminum produced by accumulative roll-bonding

  • Naoya Kamikawa
  • Xiaoxu HuangEmail author
  • Niels Hansen
Ultrafine-Grained Materials


Due to structural and textural heterogeneities and a high content of stored energy, annealing of nanostructured metals is difficult to control in order to avoid non-uniform coarsening and recrystallization. The present research demonstrates a method to homogenize the structure by annealing at low temperature before annealing at high temperature. By this two-step process, the structure is homogenized and the stored energy is reduced significantly during the first annealing step. As an example, high-purity aluminum has been deformed to a total reduction of 98.4% (equivalent strain of 4.8) by accumulative roll-bonding at room temperature. Isochronal annealing for 0.5 h of the deformed samples shows the occurrence of recrystallization at 200 °C and above. However, when introducing an annealing step for 6 h at 175 °C, no significant recrystallization is observed and relatively homogeneous structures are obtained when the samples afterwards are annealed at higher temperatures up to 300 °C. To underpin these observations, the structural evolution has been characterized by transmission electron microscopy, showing that significant annihilation of high-angle boundaries, low-angle dislocation boundaries, and dislocations characterizes the low-temperature annealing step. In a discussion, the observed annealing behavior is related to these structural changes.


Misorientation Angle Nanostructured Metal Boundary Spacing Structural Coarsening EBSD Measurement 



The authors gratefully acknowledge the Danish National Research Foundation for supporting the Center for Fundamental Research: Metal Structures in Four Dimension, within which this work was performed. The authors also thank Prof. B. Ralph for useful comments and language correction.


  1. 1.
    Altan BS, Miskioglu I, Purcek G, Mulyukov RR, Artan R (2006) Severe plastic deformation: towards bulk production of nanostructured materials. NOVA Science Publishers, New YorkGoogle Scholar
  2. 2.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103. doi: CrossRefGoogle Scholar
  3. 3.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi: CrossRefGoogle Scholar
  4. 4.
    Horita Z et al (1996) J Mater Res 11:1880. doi: CrossRefGoogle Scholar
  5. 5.
    Segal VM (1995) Mater Sci Eng A 197:157. doi: CrossRefGoogle Scholar
  6. 6.
    Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Scr Mater 35:143. doi: CrossRefGoogle Scholar
  7. 7.
    Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579. doi: CrossRefGoogle Scholar
  8. 8.
    Tsuji N, Kamikawa N, Kim HW, Minamino Y (2004) Ultrafine grained materials III. TMS, Ohio, p 219Google Scholar
  9. 9.
    Meyers MA, Mishra A, Benson DJ (2006) Prog Mater Sci 51:427. doi: CrossRefGoogle Scholar
  10. 10.
    Tsuji N, Ito Y, Saito Y, Minamino Y (2002) Scr Mater 47:893. doi: CrossRefGoogle Scholar
  11. 11.
    Li BL, Godfrey A, Meng QC, Liu Q, Hansen N (2004) Acta Mater 52:1069. doi: CrossRefGoogle Scholar
  12. 12.
    Wang YM et al (2004) Scr Mater 51:1023. doi: CrossRefGoogle Scholar
  13. 13.
    Yu CY, Kao PW, Chang CP (2005) Acta Mater 53:4019. doi: CrossRefGoogle Scholar
  14. 14.
    Xing ZP, Kang SB, Kim HW (2002) J Mater Sci 37:717. doi: CrossRefGoogle Scholar
  15. 15.
    Terada D, Inoue S, Tsuji N (2007) J Mater Sci 42:1673. doi: CrossRefGoogle Scholar
  16. 16.
    Wang J et al (1996) Acta Mater 44:2973. doi: CrossRefGoogle Scholar
  17. 17.
    Hasegawa H et al (1999) Mater Sci Eng A 265:188. doi: CrossRefGoogle Scholar
  18. 18.
    Cao WQ, Godfrey A, Hansen N, Liu Q, Metall Mater Trans, accepted for publicationGoogle Scholar
  19. 19.
    Prangnell PB, Hayes JS, Bowen JR, Apps PJ, Bate PS (2004) Acta Mater 52:3193. doi: CrossRefGoogle Scholar
  20. 20.
    Jazaeri H, Humphreys FJ (2004) Acta Mater 52:3251. doi: CrossRefGoogle Scholar
  21. 21.
    Kamikawa N, Tsuji N, Huang X, Hansen N (2006) Acta Mater 54:3055. doi: CrossRefGoogle Scholar
  22. 22.
    Li XL, Liu W, Godfrey A, Juul Jensen D, Liu Q (2007) Acta Mater 55:3531. doi: CrossRefGoogle Scholar
  23. 23.
    Kamikawa N, Tsuji N, Huang X, Hansen N, Minamino Y (2006) Mater Sci Forum 512:91CrossRefGoogle Scholar
  24. 24.
  25. 25.
    Kamikawa N, Tsuji N, Huang X, Hansen N (2007) Mater Trans 48:1978. doi: CrossRefGoogle Scholar
  26. 26.
    Hughes DA, Hansen N (2000) Acta Mater 48:2985. doi: CrossRefGoogle Scholar
  27. 27.
    Liu Q, Huang X, Lloyd DJ, Hansen N (2002) Acta Mater 50:3789. doi: CrossRefGoogle Scholar
  28. 28.
    Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing behavior. Pergamon, New YorkGoogle Scholar
  29. 29.
    Nazarov AA, Romanov AE, Valiev RZ (1993) Acta Metall Mater 41:1033. doi: CrossRefGoogle Scholar
  30. 30.
    Lian J, Valiev RZ, Baudelet B (1995) Acta Metall Mater 43:4165. doi: CrossRefGoogle Scholar
  31. 31.
    Horita Z et al (1996) Mater Charact 37:285. doi: CrossRefGoogle Scholar
  32. 32.
    Valiev RZ (2003) Adv Eng Mater 5:296. doi: CrossRefGoogle Scholar
  33. 33.
    Hansen N, Huang X, Møller MG, Godfrey A (2008) J Mater Sci. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Center for Fundamental Research: Metal Structures in Four Dimensions, Materials Research Department, Risø National Laboratory for Sustainable EnergyTechnical University of Denmark (Risø DTU)RoskildeDenmark

Personalised recommendations