Journal of Materials Science

, 43:6967

Processing methods to control silk fibroin film biomaterial features

  • Brian D. Lawrence
  • Fiorenzo Omenetto
  • Katherine Chui
  • David L. Kaplan
Article

Abstract

Control of silk structural and morphological features is reported for fibroin protein films via all aqueous processing, with and without polyethylene oxide (PEO). Silk films with thicknesses from 500 nm to 50 μm were generated with controllable surface morphologies by employing soft-lithography surface patterning or by adjusting PEO concentrations. FTIR analysis indicated that water-annealing, used to cure or set the films, resulted in increased β-sheet and α-helix content within the films. Steam sterilization provided an additional control point by increasing β-sheet content, while reducing random coil and turn structures, yet retaining film transparency and material integrity. Increased PEO concentration used during processing resulted in decreased sizes of surface globule structures, while simultaneously increasing uniformity of these features. The above results indicate that both surface and bulk morphologies and structures can be controlled by adjusting PEO concentration. The combined tool set for controlling silk film geometry and structure provides a foundation for further study of novel silk film biomaterial systems. These silk film biomaterials have potential applicability for a variety of optical and regenerative medicine applications due to their optical clarity, impressive mechanical properties, slow degradability, and biocompatibility.

References

  1. 1.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J et al (2003) Biomaterials 24(3):401. doi:10.1016/S0142-9612(02)00353-8 CrossRefGoogle Scholar
  2. 2.
    Vepari C, Kaplan DL (2007) Prog Polym Sci (Oxford) 32(8–9):991. doi:10.1016/j.progpolymsci.2007.05.013 CrossRefGoogle Scholar
  3. 3.
    Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC et al (2002) Biomaterials 23:4131. doi:10.1016/S0142-9612(02)00156-4 CrossRefGoogle Scholar
  4. 4.
    Meinel L, Fajardo R, Hofmann S, Chen J, Langer R, Snyder B et al (2005) Bone 37:688. doi:10.1016/j.bone.2005.06.010 CrossRefGoogle Scholar
  5. 5.
    Minoura N, Aiba SI, Gotoh Y, Tsukada M, Imai Y (1995) J Biomed Mater Res 29(10):1215. doi:10.1002/jbm.820291008 CrossRefGoogle Scholar
  6. 6.
    Kim UJ, Park J, Joo Kim H, Wada M, Kaplan DL (2005) Biomaterials 26(15):2775. doi:10.1016/j.biomaterials.2004.07.044 CrossRefGoogle Scholar
  7. 7.
    Wang X, Kim HJ, Xu P, Matsumoto A, Kaplan DL (2005) Langmuir 21(24):11335. doi:10.1021/la051862m CrossRefGoogle Scholar
  8. 8.
    Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan D, Gronowicz G (2006) Clin Orthop Relat Res 448:234. doi:108110.1097/01.blo.0000205879.50834.fe
  9. 9.
    Hofmann S, Wong Po Foo CT, Rossetti F, Textor M, Vunjak-Novakovic G, Kaplan DL et al (2006) J Control Release 111(1–2):219. doi:10.1016/j.jconrel.2005.12.009 CrossRefGoogle Scholar
  10. 10.
    Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronwicz G et al (2005) Biomaterials 26:147. doi:10.1016/j.biomaterials.2004.02.047 CrossRefGoogle Scholar
  11. 11.
    Panilaitis B, Altman GH, Chen J, Jin HJ, Karageorgiou V, Kaplan DL (2003) Biomaterials 24(18):3079. doi:10.1016/S0142-9612(03)00158-3 CrossRefGoogle Scholar
  12. 12.
    Vunjak-Novakovic G, Altman G, Horan R, Kaplan DL (2004) Annu Rev Biomed Eng 6:131. doi:10.1146/annurev.bioeng.6.040803.140037 CrossRefGoogle Scholar
  13. 13.
    Arai T, Freddi G, Innocenti R, Tsukada M (2004) J Appl Polym Sci 91:2383. doi:10.1002/app.13393 CrossRefGoogle Scholar
  14. 14.
    Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE et al (2004) Biomaterials 26:3385. doi:10.1016/j.biomaterials.2004.09.020 CrossRefGoogle Scholar
  15. 15.
    Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE et al (2005) Biomaterials 26(17):3385. doi:10.1016/j.biomaterials.2004.09.020 CrossRefGoogle Scholar
  16. 16.
    Tsukada M, Gotoh Y, Nagura M, Minoura N, Kasai N, Freddi G (1994) J Polym Sci Part Polym Phys 32(5):961. doi:10.1002/polb.1994.090320519 CrossRefGoogle Scholar
  17. 17.
    Jin H-J, Park J, Valluzzi R, Cebe P, Kaplan DL (2004) Biomacromolecules 5:711. doi:10.1021/bm0343287 CrossRefGoogle Scholar
  18. 18.
    Jin H-J, Park J, Karageorgiou V, Kim U-J, Valluzzi R, Cebe P et al (2005) Adv Funct Mater 15:1241. doi:10.1002/adfm.200400405 CrossRefGoogle Scholar
  19. 19.
    Matsumoto A, Chen J, Collette AL, Kim UJ, Altman GH, Cebe P et al (2006) J Phys Chem B 110(43):21630. doi:10.1021/jp056350v CrossRefGoogle Scholar
  20. 20.
    Wang X, Kluge JA, Leisk GG, Kaplan DL (2008) Biomaterials 29(8):1054. doi:10.1016/j.biomaterials.2007.11.003 CrossRefGoogle Scholar
  21. 21.
    Wilson D, Valluzzi R, Kaplan D (2000) Biophys J 78(5):2690CrossRefGoogle Scholar
  22. 22.
    Tretinnikov ON, Tamada Y (2001) Langmuir 17(23):7406. doi:10.1021/la010791y CrossRefGoogle Scholar
  23. 23.
    Motta A, Fambri L, Migliaresi C (2002) Macromol Chem Phys 203(10–11):1658. doi:10.1002/1521-3935(200207)203:10/11<1658::AID-MACP1658>3.0.CO;2-3CrossRefGoogle Scholar
  24. 24.
    Jin H-J, Kaplan DL (2003) Nature 424(28):1057. doi:10.1038/nature01809 CrossRefGoogle Scholar
  25. 25.
    Hu X, Kaplan DL, Cebe P (2006) Macromolecules 39:6161. doi:10.1021/ma0610109 CrossRefGoogle Scholar
  26. 26.
    Park J (2004) Structure and properties of silk fibroin films. Diss. Tufts University, Medford, p 56Google Scholar
  27. 27.
    Agarwal K, Hoagland DA, Farris RJ (1997) J Appl Polym Sci 63(3):401. doi:10.1002/(SICI)1097-4628(19970118)63:3<401::AID-APP17>3.0.CO;2-2CrossRefGoogle Scholar
  28. 28.
    Xia Y, Whitesides GM (1998) Annu Rev Mater Sci 28(1):153. doi:10.1146/annurev.matsci.28.1.153 CrossRefGoogle Scholar
  29. 29.
    Lawrence BD, Cronin-Golomb M, Georgakoudi I, Kaplan D, Omenetto FG (2008) Biomacromolecules 9(4):1214. doi: 10.1021/bm701235f Google Scholar
  30. 30.
    Dunn GA, Brown AF (1986) J Cell Sci 83:313Google Scholar
  31. 31.
    Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM (1999) Biomaterials 20(23–24):2363. doi:10.1016/S0142-9612(99)00165-9 CrossRefGoogle Scholar
  32. 32.
    Teixeira AI, Nealey PF, Murphy CJ (2004) J Biomed Mater Res A 71(3):369. doi:10.1002/jbm.a.30089 CrossRefGoogle Scholar
  33. 33.
    Liliensiek SJ, Campbell S, Nealey PF, Murphy CJ (2006) J Biomed Mater Res A 79(1):185. doi:10.1002/jbm.a.30744 Google Scholar
  34. 34.
    Gupta MK, Khokhar SK, Phillips DM, Sowards LA, Drummy LF, Kadakia MP et al (2007) Langmuir 23(3):1315. doi:10.1021/la062047p CrossRefGoogle Scholar
  35. 35.
    Suh KY, Khademhosseini A, Yang JM, Eng G, Langer R (2004) Adv Mater 16(7):584Google Scholar
  36. 36.
    Crabb RAB, Chau EP, Evans MC, Barocas VH, Hubel A (2006) Tissue Eng 12(6):1565. doi:10.1089/ten.2006.12.1565 CrossRefGoogle Scholar
  37. 37.
    Abrams GA, Schaus SS, Goodman SL, Nealey PF, Murphy CJ (2000) Cornea 19(1):57. doi:10.1097/00003226-200001000-00012 CrossRefGoogle Scholar
  38. 38.
    Diehl KA, Foley JD, Nealey PF, Murphy CJ (2005) J Biomed Mater Res A 75(3):603. doi:10.1002/jbm.a.30467 Google Scholar
  39. 39.
    Karlon WJ, Hsu PP, Song LI, Chien S, McCulloch AD, Omens JH (1999) Ann Biomed Eng 27(6):712. doi:10.1114/1.226 CrossRefGoogle Scholar
  40. 40.
    Karuri NW, Liliensiek S, Teixeira AI, Abrams G, Campbell S, Nealey PF et al (2004) J Cell Sci 117(15):3153. doi:10.1242/jcs.01146 CrossRefGoogle Scholar
  41. 41.
    Karuri NW, Porri TJ, Albrecht RM, Murphy CJ, Nealey PF (2006) IEEE Trans Nanobiosci 5(4):273. doi:10.1109/TNB.2006.886570 CrossRefGoogle Scholar
  42. 42.
    ImageJ, Wayne Rasband. National Institute of Health, USAGoogle Scholar
  43. 43.
    Arrondo JLR, Muga A, Castresana J, Goñi FM (1993) Prog Biophys Mol Biol 59(1): 23. doi:10.1016/0079-6107(93)90006-6
  44. 44.
    Dong A, Huang P, Caughey WS (1990) Biochemistry 29(13):3303. doi:10.1021/bi00465a022 CrossRefGoogle Scholar
  45. 45.
    Speare JO, Rush TS III (2003) Biopolymers 72(3):193. doi: 10.1002/bip.10337 CrossRefGoogle Scholar
  46. 46.
    1.37C, I.V., Wayne Rasband. National Institute of Health, USAGoogle Scholar
  47. 47.
    Vollrath F, Knight DP (2001) Nature 410(6828):541. doi:10.1038/35069000 CrossRefGoogle Scholar
  48. 48.
    Valluzzi R, Jin HJ (2004) Biomacromolecules 5(3):696. doi:10.1021/bm0343085 CrossRefGoogle Scholar
  49. 49.
    Dongbin Zhao YLZZ (2007) Water 35(1):42Google Scholar
  50. 50.
    Smith CK, Regan L (1997) Acc Chem Res 30(4):153. doi:10.1021/ar9601048 CrossRefGoogle Scholar
  51. 51.
    Jung C (2000) J Mol Recognit 13(6):325. doi:10.1002/1099-1352(200011/12)13:6<325::AID-JMR507>3.0.CO;2-CCrossRefGoogle Scholar
  52. 52.
    Chen X, Shao Z, Marinkovic NS, Miller LM, Zhou P, Chance MR (2001) Biophys Chem 89(1):25. doi:10.1016/S0301-4622(00)00213-1 CrossRefGoogle Scholar
  53. 53.
    Chen X, Shao Z, Knight DP, Vollrath F (2007) Proteins 68(1):223. doi:10.1002/prot.21414 CrossRefGoogle Scholar
  54. 54.
    Hu X, Kaplan D, Cebe P (2007) Thermochim Acta 461(1–2):137. doi:10.1016/j.tca.2006.12.011 CrossRefGoogle Scholar
  55. 55.
    Valluzzi R, Szela S, Avtges P, Kirschner D, Kaplan D (1999) J Phys Chem B 103(51):11382. doi:10.1021/jp991363s CrossRefGoogle Scholar
  56. 56.
    Asakura T, Kuzuhara A, Tabeta R, Saito H (1985) Macromolecules 18(10):1841. doi:10.1021/ma00152a009 CrossRefGoogle Scholar
  57. 57.
    Fink AL (1998) Fold Des 3(1). doi:10.1016/S1359-0278(98)00005-4
  58. 58.
    Mears DR, Pae KD, Sauer JA (1969) J Appl Phys 40(11):4229. doi:10.1063/1.1657180 CrossRefGoogle Scholar
  59. 59.
    Nakafuku C (1993) Polymer Communications 34(19):4166. doi:10.1016/0032-3861(93)90684-3
  60. 60.
    Nakafuku C, Nishimura K (2003) J Appl Polym Sci 87(12):1962. doi:10.1002/app.11601 CrossRefGoogle Scholar
  61. 61.
    Cuniberti C, Ferrando R (1972) Polymer (Guildf) 13(8):379. doi:10.1016/0032-3861(72)90058-4 CrossRefGoogle Scholar
  62. 62.
    Hammouda B, Ho DL, Kline S (2004) Macromolecules 37(18):6932. doi:10.1021/ma049623d CrossRefGoogle Scholar
  63. 63.
    Fitton JH, Dalton BA, Beumer G, Johnson G, Griesser HJ, Steele JG (1998) J Biomed Mater Res 42(2):245–257. doi:10.1002/(SICI)1097-4636(199811)42:2<245::AID-JBM9>3.0.CO;2-PCrossRefGoogle Scholar
  64. 64.
    Loesberg WA, te Riet J, van Delft FCMJM, Schön P, Figdor CG, Speller S, van Loon JJWA, Walboomers XF, Jansen JA (2007) Biomaterials 28(27):3944. doi:10.1016/j.biomaterials.2007.05.030 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Brian D. Lawrence
    • 1
  • Fiorenzo Omenetto
    • 1
  • Katherine Chui
    • 1
  • David L. Kaplan
    • 1
  1. 1.Department of Biomedical EngineeringTufts UniversityMedfordUSA

Personalised recommendations