Journal of Materials Science

, Volume 43, Issue 18, pp 6064–6069 | Cite as

The matrix stiffness role on tensile and thermal properties of carbon nanotubes/epoxy composites

  • M. R. Loos
  • S. H. Pezzin
  • S. C. Amico
  • C. P. Bergmann
  • L. A. F. CoelhoEmail author


In this study, randomly oriented single-walled carbon nanotubes (SWCNTs)/epoxy nanocomposites were fabricated by tip sonication with the aid of a solvent and subsequent casting. Two different curing cycles were used to study the role of the stiffness of the epoxy matrix on the tensile and thermal behavior of the composites. The addition of a small amount of SWCNTs (0.25 wt.%) in rubbery, i.e., soft matrices, greatly increased Young’s modulus and tensile strength of the nanocomposites. The results showed that the tensile properties of soft epoxy matrices are much more influenced by the addition of carbon nanotubes than stiffer ones. The significant improvement in tensile properties was attributed to the excellent mechanical properties and structure of SWCNTs, an adequate dispersion of SWCNTs by tip sonication, and a stronger SWCNT/matrix interfacial adhesion in softer epoxy matrices. A slight improvement in the thermal stability of the nanocomposites was also observed.


Epoxy Tensile Property Matrix Stiffness Epoxy Matrix Neat Epoxy 



The authors would like to thank CAPES-PROCAD (Project 0303054) for financial support and the scholarship to Mr. M. R. Loos and to PETROBRAS for financial support for producing carbon nanotubes.


  1. 1.
    Fidelus JD, Wiesel E, Gojny FH, Schulte K, Wagner HD (2005) Composites Part A 36(11):1555. doi: CrossRefGoogle Scholar
  2. 2.
    Moniruzzaman M, Winey KI (2006) Macromolecules 39(16):5194. doi: CrossRefGoogle Scholar
  3. 3.
    Peigney A, Flahaut E, Laurent C, Chastel F, Rousset A (2002) Chem Phys Lett 352(1–2):20. doi: CrossRefGoogle Scholar
  4. 4.
    Liu TX, Tong YJ, Zhang WD (2007) Compos Sci Technol 67(3–4):406. doi: CrossRefGoogle Scholar
  5. 5.
    Shen JF, Huang WS, Wu LP, Hu YZ, Ye MX (2007) Compos Sci Technol 67(15–16):3041. doi: CrossRefGoogle Scholar
  6. 6.
    Xu CL, Wei BQ, Ma RZ, Liang J, Ma XK, Wu DH (1999) Carbon 37(5):855. doi: CrossRefGoogle Scholar
  7. 7.
    Rosu D, Cascaval CN, Mustata F, Ciobanu C (2002) Thermochim Acta 383(1–2):119CrossRefGoogle Scholar
  8. 8.
    Zhou YX, Pervin F, Lewis L, Jeelani S (2007) Mater Sci Eng A 452:657. doi: CrossRefGoogle Scholar
  9. 9.
    Zhuang GS, Sui GX, Sun ZS, Yang R (2006) J Appl Polym Sci 102(4):3664. doi: CrossRefGoogle Scholar
  10. 10.
    Villoria RG, Miravete A, Cuartero J, Chiminelli A, Tolosana N (2006) Composites Part B 37(4–5):273. doi: CrossRefGoogle Scholar
  11. 11.
    Hong SG, Wu CS (1998) Thermochim Acta 316(2):167. doi: CrossRefGoogle Scholar
  12. 12.
    Moniruzzaman M, Du FM, Romero N, Winey KI (2006) Polymer (Guildf) 47(1):293. doi: CrossRefGoogle Scholar
  13. 13.
    Ci LJ, Bai JC (2006) Compos Sci Technol 66(3–4):599. doi: CrossRefGoogle Scholar
  14. 14.
    Puglia D, Valentini L, Armentano I, Kenny JM (2003) Diamond Relat Mater 12(3–7):827CrossRefGoogle Scholar
  15. 15.
    Allaoui A, Bai S, Cheng HM, Bai JB (2002) Compos Sci Technol 62(15):1993. doi: CrossRefGoogle Scholar
  16. 16.
    Ding W, Eitan A, Fisher FT, Chen X, Dikin DA, Andrews R et al (2003) Nano Lett 3(11):1593. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. R. Loos
    • 1
  • S. H. Pezzin
    • 1
  • S. C. Amico
    • 2
  • C. P. Bergmann
    • 2
  • L. A. F. Coelho
    • 1
    Email author
  1. 1.Centro de Ciências TecnológicasUDESCJoinvilleBrazil
  2. 2.DEMAT, PPGEMUFRGSPorto AlegreBrazil

Personalised recommendations