Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6029–6037 | Cite as

Detailed investigation of ultrasonic Al–Cu wire-bonds: I. Intermetallic formation in the as-bonded state

  • M. Drozdov
  • G. Gur
  • Z. Atzmon
  • Wayne D. Kaplan
Article

Abstract

Scanning and transmission electron microscopy were used to study intermetallic formation and the interface morphology in copper wire-bonds. The ends of copper wires were melted in air and in a protective environment to form wire-balls. The protective environment enabled formation of symmetrical and relatively defect-free copper balls, together with a smaller heat affected zone (in comparison with wires melted in air). Detailed morphological and compositional characterization of the Al–Cu as-bonded interface was conducted using scanning and transmission electron microscopy, on specimens prepared by focused ion beam milling. Discontinuous and non-uniform intermetallics were found in regions where high localized stress was introduced during the wire-bonding process. The main intermetallic phase was found to be Al2Cu.

Keywords

Copper Wire Transmission Electron Microscopy Specimen Aluminum Metallization Ball Bonding Bond Center 

Notes

Acknowledgements

The authors thank A. Berner, Y. Kauffman, and I. Popov for fruitful discussions. This research was partially supported by the Russell Berrie Nanotechnology Institute at the Technion.

References

  1. 1.
    Harman G (1997) Wire bonding in microelectronics materials, processes, reliability and yield. McGraw-HillGoogle Scholar
  2. 2.
    Braunovic M, Alexandrov N (1994) IEEE Trans Compon Hybr Manuf Technol A 17(1):78. doi: https://doi.org/10.1109/95.296372 CrossRefGoogle Scholar
  3. 3.
    Brydson R, Bruley J, Mullejans H, Scheu C, Ruhle M (1995) Ultramicroscopy 59(1–4):81. doi: https://doi.org/10.1016/0304-3991(95)00020-2 CrossRefGoogle Scholar
  4. 4.
    Sadan H, Kaplan WD (2006) J Mater Sci 41(16):5099. doi: https://doi.org/10.1007/s10853-006-0437-5 CrossRefGoogle Scholar
  5. 5.
    Toyozawa K, Fujita K, Minamide S, Maeda T (1990) IEEE Trans Compon Hybr Manuf Technol 13(4):667. doi: https://doi.org/10.1109/33.62577 CrossRefGoogle Scholar
  6. 6.
    Singh I, On JY, Levine L (2005) Proc Electron Compon Technol 55(1):843Google Scholar
  7. 7.
    Tan CW, Daud AR (2002) J Mater Sci Mater Electron 13(5):309. doi: https://doi.org/10.1023/A:1015580227090 CrossRefGoogle Scholar
  8. 8.
    Murali S, Srikanth N, Vath CJ (2003) Mater Charact 50(1):39. doi: https://doi.org/10.1016/S1044-5803(03)00102-5 CrossRefGoogle Scholar
  9. 9.
    Wulff FW, Breach CD, Saraswati SD, Dittmer KJ (2004) Proc Electron Packag Technol Conf 348:353Google Scholar
  10. 10.
    Onuki J, Koizumi M, Araki I (1987) IEEE Trans Compon Hybr Manuf Technol 10(4):550. doi: https://doi.org/10.1109/TCHMT.1987.1134799 CrossRefGoogle Scholar
  11. 11.
    Ratchev P, Stoukatch S, Swinnen B (2006) Microelectron Reliab 46(8):1315. doi: https://doi.org/10.1016/j.microrel.2005.11.002 CrossRefGoogle Scholar
  12. 12.
    Kim H-J, Lee JY, Paik K-W, Koh K-W et al (2003) IEEE Trans Compon Packag Tech 26(2):367. doi: https://doi.org/10.1109/TCAPT.2003.815121 CrossRefGoogle Scholar
  13. 13.
    Murali S, Srikanth N, Wong YM, Vath CJ (2007) J Mater Sci 42(2):615. doi: https://doi.org/10.1007/s10853-006-1148-7 CrossRefGoogle Scholar
  14. 14.
    Karpel A, Gur G, Atzmon Z, Kaplan WD (2007) J Mater Sci 42(7):2334. doi: https://doi.org/10.1007/s10853-007-1592-z CrossRefGoogle Scholar
  15. 15.
    Wulff FW, Breach CD, Saraswati SD, Dittmer KJ, Garnier M (2005) https://doi.org/www.kns.com. Accessed 30 August 2007
  16. 16.
    Murali S, Srikanth N, Vath CJ III (2003) Mater Res Bull 38(4):637. doi: https://doi.org/10.1016/S0025-5408(03)00004-7 CrossRefGoogle Scholar
  17. 17.
    Murali S, Srikanth N, Vath CJ (2006) J Electron Packag 128(3):192. doi: https://doi.org/10.1115/1.2229214 CrossRefGoogle Scholar
  18. 18.
    Drozdov M, Gur G, Atzmon Z, Kaplan WD (2008) J Mater Sci. doi: https://doi.org/10.1007/s10853-008-2955-9 CrossRefGoogle Scholar
  19. 19.
    Zhong ZW, Ho HM, Tan YC, Tan WC et al (2007) Microelectron Eng 84(2):368. doi: https://doi.org/10.1016/j.mee.2006.11.003 CrossRefGoogle Scholar
  20. 20.
    Thangadurai P, Lumelsky Y, Silverstein MS, Kaplan WD (2008) Mater Char. doi: https://doi.org/10.1016/j.matchar.2008.02.007 (in press)
  21. 21.
    Wang G, Wu SD, Esling C, Li GY et al (2003) Adv Eng Mater 5(8):593. doi: https://doi.org/10.1002/adem.200300388 CrossRefGoogle Scholar
  22. 22.
    Wang G, Wu SD, Zuo L, Esling C et al (2003) Mater Sci Eng A 346(1–2):83. doi: https://doi.org/10.1016/S0921-5093(02)00521-X Google Scholar
  23. 23.
    Kempshall BW, Schwarz SM, Prenitzer BI, Giannuzzi LA et al (2001) J Vac Sci Technol B 19(3):749. doi: https://doi.org/10.1116/1.1368670 CrossRefGoogle Scholar
  24. 24.
    Casey JD, Phaneuf M, Chandler C, Megorden M et al (2002) J Vac Sci Technol B 20(6):2682. doi: https://doi.org/10.1116/1.1521736 CrossRefGoogle Scholar
  25. 25.
    Karpel A, Gur G, Atzmon Z, Kaplan WD (2007) J Mater Sci 42(7):2347. doi: https://doi.org/10.1007/s10853-007-1593-y CrossRefGoogle Scholar
  26. 26.
    Cohen IM, Huang LJ, Ayyaswamy PS (1995) Int J Heat Mass Transfer 38(9):1647. doi: https://doi.org/10.1016/0017-9310(94)00294-6 CrossRefGoogle Scholar
  27. 27.
    CRC handbook of chemistry and physics, 87th edn. https://doi.org/www.hbcpnetbase.com/. Accessed 30 August 2007
  28. 28.
    Smithells CF (1976) Metals reference book. London & Boston, ButterworthsGoogle Scholar
  29. 29.
    Campisano SU, Chu T, Cannavo S, Rimini E (1984) Mater Res Society Symp Pros 97:102Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Drozdov
    • 1
  • G. Gur
    • 2
  • Z. Atzmon
    • 2
  • Wayne D. Kaplan
    • 1
  1. 1.Department of Materials EngineeringTechnion—Israel Institute of TechnologyHaifaIsrael
  2. 2.Kulicke & Soffa Bonding ToolsYokneam EliteIsrael

Personalised recommendations