Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6081–6086 | Cite as

Coupling kinetic dislocation model and Monte Carlo algorithm for recrystallized microstructure modeling of severely deformed copper

  • M. KazeminezhadEmail author
  • E. Hosseini
Article

Abstract

By coupling a kinetic dislocation model and Monte Carlo algorithm, the recrystallized microstructure of severely deformed Oxygen Free High Conductivity Copper (OFHC) is predicted at different strains imposed by Equal-Channel-Angular-Pressing (ECAP) and annealing temperatures. From a flow field model, the strain rate distribution during the ECAP of the material in a curved die is calculated. Then using the kinetic dislocation model, the total dislocation density and correspondingly the stored energy after each ECAP pass is estimated. Utilizing the Monte Carlo algorithm and the stored energy, the recrystallized microstructure is predicted. The results show that the recrystallized grain size is decreased rapidly from the strain of first to fourth pass and then it is decreased slowly. Also, it is achieved that with increasing the annealing temperature, the grain size is increased. Moreover, a good agreement is observed between the predicted results and experimental data.

Keywords

Severe Plastic Deformation Monte Carlo Algorithm Subgrain Size Fourth Pass ECAP Process 

Notes

Acknowledgement

The authors wish to thank the research board of Sharif University of Technology for the financial support and the provision of the research facilities used for this work.

References

  1. 1.
    Valiev RZ, Langdon TG (2006) Prog Mater Sci 51:881. doi: https://doi.org/10.1016/j.pmatsci.2006.02.003 CrossRefGoogle Scholar
  2. 2.
    Zhao G, Xu S, Luan Y, Guan Y, Lun N, Ren X (2006) Mater Sci Eng 437A:437Google Scholar
  3. 3.
    Fukuda Y, Oh-ishi K, Furukawa M, Horita Z, Langdon TG (2007) J Mater Sci 42:1501. doi: https://doi.org/10.1007/s10853-006-0753-9 CrossRefGoogle Scholar
  4. 4.
    Dalla Torre F, Lapovok R, Sandlin J, Thomson PF, Davies CHJ, Pereloma EV (2004) Acta Mater 52:4819. doi: https://doi.org/10.1016/j.actamat.2004.06.040 CrossRefGoogle Scholar
  5. 5.
    Yu CY, Sun PL, Kao PW, Chang CP (2004) Mater Sci Eng 366A:310CrossRefGoogle Scholar
  6. 6.
    Kazeminezhad M (2008) Comput Mater Sci 43:309CrossRefGoogle Scholar
  7. 7.
    Estrin Y, Toth LS, Molinari A, Brechet Y (1998) Acta Mater 46:5509. doi: https://doi.org/10.1016/S1359-6454(98)00196-7 CrossRefGoogle Scholar
  8. 8.
    Toth LS, Molinari A, Estrin Y (2002) J Eng Mater Technol 124:71. doi: https://doi.org/10.1115/1.1421350 CrossRefGoogle Scholar
  9. 9.
    Mckenzie PWJ, Lapovok R, Estrin Y (2007) Acta Mater 55:2985. doi: https://doi.org/10.1016/j.actamat.2006.12.038 CrossRefGoogle Scholar
  10. 10.
    Srolovitz DJ, Grest GS, Anderson MP (1986) Acta Metall 34:1833. doi: https://doi.org/10.1016/0001-6160(86)90128-8 CrossRefGoogle Scholar
  11. 11.
    Srolovitz D, Grest G, Anderson M, Rollett A (1988) Acta Metall 36:3115. doi: https://doi.org/10.1016/0001-6160(88)90313-6 CrossRefGoogle Scholar
  12. 12.
    Toth LS, Massion RA, Germain L, Baik SC, Suwas S (2004) Acta Mater 52:1885. doi: https://doi.org/10.1016/j.actamat.2003.12.027 CrossRefGoogle Scholar
  13. 13.
    Toth LS (2005) Comput Mater Sci 32:568. doi: https://doi.org/10.1016/j.commatsci.2004.09.007 CrossRefGoogle Scholar
  14. 14.
    Stoica GM, Fielden DE, McDaniels R, Liub Y, Huangb B, Liaw PK et al (2005) Mater Sci Eng 410A:239CrossRefGoogle Scholar
  15. 15.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, OxfordGoogle Scholar
  16. 16.
    Ivasishin OM, Shevchenko SV, Vasiliev NL, Semiatin SL (2006) Mater Sci Eng 433A:216CrossRefGoogle Scholar
  17. 17.
    Byrne JG (1965) Recovery recrystallization and grain growth. Mcmillan Company, USAGoogle Scholar
  18. 18.
    Seo YS, Chun YB, Hwang SK (2008) Comput Mater Sci 43:512CrossRefGoogle Scholar
  19. 19.
    Song X, Rettenmayr M, Muller C, Exner HE (2001) Metall Mater Trans 32A:2199CrossRefGoogle Scholar
  20. 20.
    Song X, Rettenmayr M (2002) Mater Sci Eng 332A:153CrossRefGoogle Scholar
  21. 21.
    Beyerlein IJ, Tome CN (2004) Mater Sci Eng 380A:171CrossRefGoogle Scholar
  22. 22.
    Enikeev NA, Kimb HS, Alexandrov IV (2007) Mater Sci Eng A 460–461:619. doi: https://doi.org/10.1016/j.msea.2007.02.005 CrossRefGoogle Scholar
  23. 23.
    Mecking H, Kocks U (1981) Acta Mater 29:1865. doi: https://doi.org/10.1016/0001-6160(81)90112-7 CrossRefGoogle Scholar
  24. 24.
    Estrin Y, Mecking H (1984) Acta Mater 32:57. doi: https://doi.org/10.1016/0001-6160(84)90202-5 CrossRefGoogle Scholar
  25. 25.
    Baik SC, Estrin Y, Kim HS, Hellmig RJ (2003) Mater Sci Eng A 351:86. doi: https://doi.org/10.1016/S0921-5093(02)00847-X CrossRefGoogle Scholar
  26. 26.
    Mishra A, Kad BK, Gregori F, Meyers MA (2007) Acta Mater 55:13. doi: https://doi.org/10.1016/j.actamat.2006.07.008 CrossRefGoogle Scholar
  27. 27.
    Kadri SJ, Hartwig KT (2006) Mater Sci Forum 503:349CrossRefGoogle Scholar
  28. 28.
    Neishi K, Horita Z, Langdon TG (2002) Mater Sci Eng 325A:54CrossRefGoogle Scholar
  29. 29.
    Neishi K, Horita Z, Langdon TG (2003) Mater Sci Eng 352A:129CrossRefGoogle Scholar
  30. 30.
    Flinn JE, Field DP, Korth GE, Lillo TM, Macheret J (2001) Acta Mater 49:2065. doi: https://doi.org/10.1016/S1359-6454(01)00102-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran

Personalised recommendations