Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6087–6093 | Cite as

Effects of lanthanum modification on dielectric properties of Pb(Zr0.90,Ti0.10)O3 ceramics: enhanced antiferroelectric stability

  • A. Peláiz-Barranco
  • J. D. S. Guerra
  • O. García-Zaldívar
  • F. Calderón-Piñar
  • E. B. Araújo
  • D. A. Hall
  • M. E. Mendoza
  • J. A. Eiras
Article

Abstract

Lanthanum modified lead zirconate titanate ceramics with lanthanum content changing from 2 to 6 at% La and a Zr/Ti ratio of 90/10 (PLZT x/90/10) have been analyzed by using X-ray diffraction, dielectric response, differential scanning calorimetry, and ferroelectric hysteresis. An antiferroelectric state was found to be stabilized, whereas the long-range ferroelectric state was disrupted by lanthanum substitution on the lead sites. A ferroelectric state is shown to be stable over an antiferroelectric state for low lanthanum contents in a wide temperature range, where both phases coexist. With the increase of the lanthanum concentration, the long-range coherency of the ferroelectric state is suppressed, i.e., the temperature range of the ferroelectric state stability decreased, disappearing for > 3 at% La.

Keywords

Lanthanum Modulate Differential Scanning Calorimetry Ferroelectric State Ferroelectric Hysteresis Loop Antiferroelectric Phase 

Notes

Acknowledgements

The authors wish to thank the Third World Academy of Sciences (RG/PHYS/LA No. 99-050, No. 02-225 and No. 05-043), the FAPESP Brazilian agency (Pro. No. 06/60013-5) for financial support and the ICTP (Trieste-Italy) for financial support of Latin-American Network of Ferroelectric Materials (NET-43). Dr. Aimé Peláiz-Barranco wishes to thank the Royal Society (Ref.: 2007/R1). MSc. Garcia-Zaldívar wishes to thanks the Red de Macrouniversidades/2007. Special thanks to R. de Lahaye for technical help.

References

  1. 1.
    Jaffe B (1961) Proc IRE 49:1264CrossRefGoogle Scholar
  2. 2.
    Pan W, Zhang Q, Bhalla A, Cross LE (1989) J Am Ceram Soc 72:571. doi: https://doi.org/10.1111/j.1151-2916.1989.tb06177.x CrossRefGoogle Scholar
  3. 3.
    Kim IW, Lee DS, Kang SH, Ahn ChW (2003) Thin Solid Films 441:115. doi: https://doi.org/10.1016/S0040-6090(03)00909-X CrossRefGoogle Scholar
  4. 4.
    Burn I (1971) Bull Am Ceram Soc 50:501Google Scholar
  5. 5.
    Puchmark C, Jiansirisomboon S, Rujijanagul G, Tunkasiri T (2004) Curr Appl Phys 4:179. doi: https://doi.org/10.1016/j.cap.2003.11.003 CrossRefGoogle Scholar
  6. 6.
    Biggers JV, Schulze WA (1974) Bull Am Ceram Soc 53:809Google Scholar
  7. 7.
    Ishchuk VM, Baumer VN, Sobolev VL (2005) J Phys Condens Matter 17:L177. doi: https://doi.org/10.1088/0953-8984/17/19/L01 CrossRefGoogle Scholar
  8. 8.
    Zhou L, Lupascu DC, Zimmermann A, Zhang Y (2005) J Appl Phys 97:124106. doi: https://doi.org/10.1063/1.1946906 CrossRefGoogle Scholar
  9. 9.
    Ranjan R, Pandey D (2001) J Phys Condens Matter 13:4239. doi: https://doi.org/10.1088/0953-8984/13/19/305 CrossRefGoogle Scholar
  10. 10.
    Pokharel BP, Pandey D (2000) J Appl Phys 88:5364. doi: https://doi.org/10.1063/1.1317241 CrossRefGoogle Scholar
  11. 11.
    Xu Y, Singh RN (2000) J Appl Phys 88:7249. doi: https://doi.org/10.1063/1.1325380 CrossRefGoogle Scholar
  12. 12.
    Bharadwaja SSN, Krupanidhi SB (2001) J Appl Phys 89:4541. doi: https://doi.org/10.1063/1.1331659 CrossRefGoogle Scholar
  13. 13.
    Xu Y (1991) Ferroelectric materials and their applications. Elsevier Science Publishers BV, The NetherlandsGoogle Scholar
  14. 14.
    Dai X, DiGiovanni A, Viehland D (1993) J Appl Phys 74:3399. doi: https://doi.org/10.1063/1.354567 CrossRefGoogle Scholar
  15. 15.
    Thomas NW (1990) J Phys Chem Solids 51:1419. doi: https://doi.org/10.1016/0022-3697(90)90025-B CrossRefGoogle Scholar
  16. 16.
    Kong LB, Ma J (2002) Mater Lett 56:30. doi: https://doi.org/10.1016/S0167-577X(02)00412-3 CrossRefGoogle Scholar
  17. 17.
    Landolt-Bornstein (1981) Numerical data and functional relationships in science and technology, vol 16. Springer-Verlag, Berlin, Heidelberg, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • A. Peláiz-Barranco
    • 1
  • J. D. S. Guerra
    • 2
  • O. García-Zaldívar
    • 1
  • F. Calderón-Piñar
    • 1
  • E. B. Araújo
    • 2
  • D. A. Hall
    • 3
  • M. E. Mendoza
    • 4
  • J. A. Eiras
    • 5
  1. 1.Facultad de Física-Instituto de Ciencia y Tecnología de MaterialesUniversidad de La Habana, San Lázaro y L, Vedado.La HabanaCuba
  2. 2.Departamento de Física e QuímicaUniversidad Estadual PaulistaIlha SolteiraBrazil
  3. 3.School of MaterialsUniversity of ManchesterManchesterUK
  4. 4.Instituto de FísicaUniversidad Autónoma de Puebla. Apdo. Postal J-48PueblaMéxico
  5. 5.Universidad Federal de São CarlosSão CarlosBrazil

Personalised recommendations