Journal of Materials Science

, Volume 43, Issue 20, pp 6771–6776 | Cite as

Influence of ZrO2 addition on the structure, thermal stability, and dielectric properties of ZnTiO3 ceramics

  • Yin-Lai Chai
  • Yee-Shin Chang
  • Lay-Gaik TeohEmail author
  • Yi-Jing Lin
  • Yu-Jen Hsiao


The zinc titanates doped with zirconium were synthesized by conventional solid-state reaction using metal oxides. X-ray diffractometry and differential scanning calorimetry analysis results indicated that the stable region of the hexagonal Zn(ZrxTi1−x)O3 phase extended to a high temperature (above 945 °C). The c/a value decreased as the Zr concentrations increased, which may be caused by the Zr4+ addition resulting in a shorter distance between the center ion and its nearest neighbors of the octahedron, and the bonding force between the B-site ion and oxygen ion of ABO3 perovskite-like structure becoming stronger. The dielectric properties exhibited a significant dependence on the sintering temperatures and the amount of ZrO2 addition. The dielectric constant decreased and Curie temperature (Tc) increased slightly with the increasing amounts of Zr ions. This is caused by the second phase of ZnZrO3 which was deposited at the grain boundaries and inhibited the grain growth. Furthermore, diffuse phase transition with a maximum permittivity at a transition temperature that is close to room temperature in Zn(ZrxTi1−x)O3 was observed.


Dielectric Constant Sinter Temperature Diffuse Phase Transition Oblique Direction Zinc Titanate 



The authors wish to thank the Nation Science Council of Taiwan for supporting the project with grant number NSC96-2622-E-150-034-CC3.


  1. 1.
    Yamamoto O, Takeda Y, Kanno R, Noda M (1987) Solid State Ionic 22:241. doi: CrossRefGoogle Scholar
  2. 2.
    Shimizu Y, Uemura K, Miura N, Yamzoe N (1988) Chem Lett 12:1979. doi: CrossRefGoogle Scholar
  3. 3.
    Obayashi H, Sakurai Y, Gejo T (1976) J Solid State Chem 17:299. doi: CrossRefGoogle Scholar
  4. 4.
    Shimizu Y, Komatsu H, Michishita S, Miura M, Yamazoe N (1996) Sens Actuators B 34:493. doi: CrossRefGoogle Scholar
  5. 5.
    Chen ZX, Derking A, Koot W, van Dijk MP (1996) J Catal 161:730. doi: CrossRefGoogle Scholar
  6. 6.
    Dulin FH, Rase DE (1960) J Am Ceram Soc 43:125. doi: CrossRefGoogle Scholar
  7. 7.
    Bartram SF, Slepetys RA (1961) J Am Ceram Soc 44:493. doi: CrossRefGoogle Scholar
  8. 8.
    Yamaguchi O, Morimi M, Kawabata H, Shimizu K (1987) J Am Ceram Soc 70:c97Google Scholar
  9. 9.
    Sohn JH, Inaguma Y, Yoon SO, Itoh M, Nakamura T, Yoon SJ, Kim HJ (1994) Jpn J Appl Phys 33:5466. doi: CrossRefGoogle Scholar
  10. 10.
    McCord AT, Saunder HF (1945) Ceram Abstr. US Patent 2,739,019Google Scholar
  11. 11.
    Ozdemir S, Bardakci T (1999) Sep Purif Technol 16:225. doi: CrossRefGoogle Scholar
  12. 12.
    Kim HT, Nahm S, Byun JD (1999) J Am Ceram Soc 82(12):3476CrossRefGoogle Scholar
  13. 13.
    Chang YS, Chang YH, Chen IG, Chen GJ, Chai YL, Wu S, Fang TH (2003) J Alloy Compd 354:303CrossRefGoogle Scholar
  14. 14.
    Chang YS, Chang YH, Chen IG, Chen GJ (2003) Solid State Commun 128:203. doi: CrossRefGoogle Scholar
  15. 15.
    Wang SF, Gu F, Lü MK, Song CF, Xu D, Yuan DR, Liu SW (2003) Chem Phys Lett 373:223. doi: CrossRefGoogle Scholar
  16. 16.
    Wang SF, Lü MK, Gu F, Song CF, Xu D, Yuan DR, Liu SW, Zhou GJ, Qi YX (2003) Inorg Chem Commun 6:185. doi: CrossRefGoogle Scholar
  17. 17.
    Hennings D, Schnell A, Simon G (1982) J Am Ceram Soc 65:539. doi: CrossRefGoogle Scholar
  18. 18.
    Lee SG, Kang DS (2003) Mater Lett 57:1629. doi: CrossRefGoogle Scholar
  19. 19.
    Glerup M, Nielsen OF, Poulsen FW (2001) J Solid State Chem 160:25. doi: CrossRefGoogle Scholar
  20. 20.
    Chang YS, Chang YH, Chen IG, Chen GJ, Chai YL (2002) J Cryst Growth 243:319. doi: CrossRefGoogle Scholar
  21. 21.
    Doerr W, Assmann H, Maier G, Steven J (1979) J Nucl Mater 81:135. doi: CrossRefGoogle Scholar
  22. 22.
    Sugiura M, Ikeda K, (1950) J Jpn Ceram Assoc 55 (626) 62; Ceram Abstr 164e Google Scholar
  23. 23.
    Lemanov VV, Sotnikov AV, Smirnova EP, Weihnacht M, Kunze R (1999) Solid State Commun 110:611. doi: CrossRefGoogle Scholar
  24. 24.
    Lines ME, Glass AM (1977) Principals and applications of ferroelectrics and related materials. Oxford University Press, OxfordGoogle Scholar
  25. 25.
    Piligrim SM, Sutherland AE, Winzer SR (1990) J Am Ceram Soc 73:3122. doi: CrossRefGoogle Scholar
  26. 26.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, New York, p 98Google Scholar
  27. 27.
    Luan W, Gao L, Guo J (1999) Ceram Int 25:727. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Yin-Lai Chai
    • 1
  • Yee-Shin Chang
    • 2
  • Lay-Gaik Teoh
    • 3
    Email author
  • Yi-Jing Lin
    • 4
  • Yu-Jen Hsiao
    • 5
  1. 1.Department of Resources EngineeringDahan Institute of TechnologyHualienTaiwan
  2. 2.Department of Electronic EngineeringNational Formosa UniversityHuweiTaiwan
  3. 3.Department of Mechanical EngineeringNational Pingtung University of Science and TechnologyNeipuTaiwan
  4. 4.Department of Materials Science and EngineeringNational Cheng Kung UniversityTainanTaiwan
  5. 5.National Nano Device LaboratoriesScience-based Industrial ParkTainanTaiwan

Personalised recommendations