Influence of ZrO2 addition on the structure, thermal stability, and dielectric properties of ZnTiO3 ceramics
- 198 Downloads
- 8 Citations
Abstract
The zinc titanates doped with zirconium were synthesized by conventional solid-state reaction using metal oxides. X-ray diffractometry and differential scanning calorimetry analysis results indicated that the stable region of the hexagonal Zn(ZrxTi1−x)O3 phase extended to a high temperature (above 945 °C). The c/a value decreased as the Zr concentrations increased, which may be caused by the Zr4+ addition resulting in a shorter distance between the center ion and its nearest neighbors of the octahedron, and the bonding force between the B-site ion and oxygen ion of ABO3 perovskite-like structure becoming stronger. The dielectric properties exhibited a significant dependence on the sintering temperatures and the amount of ZrO2 addition. The dielectric constant decreased and Curie temperature (Tc) increased slightly with the increasing amounts of Zr ions. This is caused by the second phase of ZnZrO3 which was deposited at the grain boundaries and inhibited the grain growth. Furthermore, diffuse phase transition with a maximum permittivity at a transition temperature that is close to room temperature in Zn(ZrxTi1−x)O3 was observed.
Keywords
Dielectric Constant Sinter Temperature Diffuse Phase Transition Oblique Direction Zinc TitanateNotes
Acknowledgements
The authors wish to thank the Nation Science Council of Taiwan for supporting the project with grant number NSC96-2622-E-150-034-CC3.
References
- 1.Yamamoto O, Takeda Y, Kanno R, Noda M (1987) Solid State Ionic 22:241. doi: https://doi.org/10.1016/0167-2738(87)90039-7 CrossRefGoogle Scholar
- 2.Shimizu Y, Uemura K, Miura N, Yamzoe N (1988) Chem Lett 12:1979. doi: https://doi.org/10.1246/cl.1988.1979 CrossRefGoogle Scholar
- 3.Obayashi H, Sakurai Y, Gejo T (1976) J Solid State Chem 17:299. doi: https://doi.org/10.1016/0022-4596(76)90135-3 CrossRefGoogle Scholar
- 4.Shimizu Y, Komatsu H, Michishita S, Miura M, Yamazoe N (1996) Sens Actuators B 34:493. doi: https://doi.org/10.1016/S0925-4005(97)80021-4 CrossRefGoogle Scholar
- 5.Chen ZX, Derking A, Koot W, van Dijk MP (1996) J Catal 161:730. doi: https://doi.org/10.1006/jcat.1996.0235 CrossRefGoogle Scholar
- 6.Dulin FH, Rase DE (1960) J Am Ceram Soc 43:125. doi: https://doi.org/10.1111/j.1151-2916.1960.tb14326.x CrossRefGoogle Scholar
- 7.Bartram SF, Slepetys RA (1961) J Am Ceram Soc 44:493. doi: https://doi.org/10.1111/j.1151-2916.1961.tb13712.x CrossRefGoogle Scholar
- 8.Yamaguchi O, Morimi M, Kawabata H, Shimizu K (1987) J Am Ceram Soc 70:c97Google Scholar
- 9.Sohn JH, Inaguma Y, Yoon SO, Itoh M, Nakamura T, Yoon SJ, Kim HJ (1994) Jpn J Appl Phys 33:5466. doi: https://doi.org/10.1143/JJAP.33.5466 CrossRefGoogle Scholar
- 10.McCord AT, Saunder HF (1945) Ceram Abstr. US Patent 2,739,019Google Scholar
- 11.Ozdemir S, Bardakci T (1999) Sep Purif Technol 16:225. doi: https://doi.org/10.1016/S1383-5866(99)00013-1 CrossRefGoogle Scholar
- 12.Kim HT, Nahm S, Byun JD (1999) J Am Ceram Soc 82(12):3476CrossRefGoogle Scholar
- 13.Chang YS, Chang YH, Chen IG, Chen GJ, Chai YL, Wu S, Fang TH (2003) J Alloy Compd 354:303CrossRefGoogle Scholar
- 14.Chang YS, Chang YH, Chen IG, Chen GJ (2003) Solid State Commun 128:203. doi: https://doi.org/10.1016/S0038-1098(03)00527-1 CrossRefGoogle Scholar
- 15.Wang SF, Gu F, Lü MK, Song CF, Xu D, Yuan DR, Liu SW (2003) Chem Phys Lett 373:223. doi: https://doi.org/10.1016/S0009-2614(03)00620-1 CrossRefGoogle Scholar
- 16.Wang SF, Lü MK, Gu F, Song CF, Xu D, Yuan DR, Liu SW, Zhou GJ, Qi YX (2003) Inorg Chem Commun 6:185. doi: https://doi.org/10.1016/S1387-7003(02)00711-6 CrossRefGoogle Scholar
- 17.Hennings D, Schnell A, Simon G (1982) J Am Ceram Soc 65:539. doi: https://doi.org/10.1111/j.1151-2916.1982.tb10778.x CrossRefGoogle Scholar
- 18.Lee SG, Kang DS (2003) Mater Lett 57:1629. doi: https://doi.org/10.1016/S0167-577X(02)01043-1 CrossRefGoogle Scholar
- 19.Glerup M, Nielsen OF, Poulsen FW (2001) J Solid State Chem 160:25. doi: https://doi.org/10.1006/jssc.2000.9142 CrossRefGoogle Scholar
- 20.Chang YS, Chang YH, Chen IG, Chen GJ, Chai YL (2002) J Cryst Growth 243:319. doi: https://doi.org/10.1016/S0022-0248(02)01490-2 CrossRefGoogle Scholar
- 21.Doerr W, Assmann H, Maier G, Steven J (1979) J Nucl Mater 81:135. doi: https://doi.org/10.1016/0022-3115(79)90071-0 CrossRefGoogle Scholar
- 22.Sugiura M, Ikeda K, (1950) J Jpn Ceram Assoc 55 (626) 62; Ceram Abstr 164e Google Scholar
- 23.Lemanov VV, Sotnikov AV, Smirnova EP, Weihnacht M, Kunze R (1999) Solid State Commun 110:611. doi: https://doi.org/10.1016/S0038-1098(99)00153-2 CrossRefGoogle Scholar
- 24.Lines ME, Glass AM (1977) Principals and applications of ferroelectrics and related materials. Oxford University Press, OxfordGoogle Scholar
- 25.Piligrim SM, Sutherland AE, Winzer SR (1990) J Am Ceram Soc 73:3122. doi: https://doi.org/10.1111/j.1151-2916.1990.tb06733.x CrossRefGoogle Scholar
- 26.Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, New York, p 98Google Scholar
- 27.Luan W, Gao L, Guo J (1999) Ceram Int 25:727. doi: https://doi.org/10.1016/S0272-8842(99)00009-7 CrossRefGoogle Scholar