Journal of Materials Science

, Volume 43, Issue 18, pp 6105–6108 | Cite as

Effects of high magnetic field strength and direction on pearlite formation in Fe–0.12%C steel

  • J. Y. Song
  • Y. D. Zhang
  • X. ZhaoEmail author
  • L. Zuo


The effect of a magnetic field on the formation of pearlite in a Fe–0.12%C steel was investigated. The results show that pearlite colonies elongate and align along the field direction, and that this tendency increases with increasing magnetic field strength. The possible preferential nucleation of ferrite between existing ferrite grains aligned along field direction at the later stage of proeutectoid transformation promotes carbon diffusion into the austenite areas between the ferrite chains accounts for the phenomena. Moreover, the field effect is dependent on the specimen position with respect to the field direction.


Ferrite Austenite Cementite Pearlite High Magnetic Field 



This work was supported by the National Natural Science Foundation of China (Grant No. 50771026), and the “111” Project (Grant No. B07015). The authors would like to appreciate the High Magnetic Field Laboratory of Northeastern University for providing the facilities.


  1. 1.
    Shimotomai M, Maruta K, Mine K, Matsui M (2003) Acta Mater 51:2921CrossRefGoogle Scholar
  2. 2.
    Shimotomai M, Maruta K (2000) Scr Mater 42:499. doi: CrossRefGoogle Scholar
  3. 3.
    Ohtsuka H, Xu Y, Wada H (2000) Mater Trans JIM 41:907CrossRefGoogle Scholar
  4. 4.
    Choi JK, Ohtsuka H, Xu Y, Choo WY (2000) Scr Mater 43:221. doi: CrossRefGoogle Scholar
  5. 5.
    Zhang YD, Gey N, He CS, Zhao X, Zhuo L, Esling C (2004) Acta Mater 52:3468Google Scholar
  6. 6.
    Zhang YD, He CS, Zhao X, Esling C, Zuo L (2004) Adv Eng Mater 6:310. doi: CrossRefGoogle Scholar
  7. 7.
    Zhang YD, Zhao X, He CS, Zuo L, He JC, Esling C (2004) CAMP-ISIJ 17:1219Google Scholar
  8. 8.
    Hao XJ, Ohtsuka H, Rango P (2003) Mater Trans 44:211. doi: CrossRefGoogle Scholar
  9. 9.
    Hao XJ, Ohtsuka H, Wada H (2003) Mater Trans 44:2532. doi: CrossRefGoogle Scholar
  10. 10.
    Zhang YD, He CS, Zhao X, Zuo L, Esling C (2004) J Magn Magn Mater 284:287. doi: CrossRefGoogle Scholar
  11. 11.
    Zhang YD, He CS, Zhao X, Zuo L, Esling C, He JC (2005) J Magn Magn Mater 294:267. doi: CrossRefGoogle Scholar
  12. 12.
    Ohtsuka H, Xu Y, Choi JK, Oishi Y, Murai T, Wada H (2000) The 3rd international symposium on EPM, Nagoya, Japan, p 596Google Scholar
  13. 13.
    Wu CY, Li TJ, Wen B, Jin JZ (2004) J Mater Sci 39:1129. doi: CrossRefGoogle Scholar
  14. 14.
    Jaramillo RA, Babu SS, Ludtka GM, Kisner RA, Wilgen JB (2005) Scr Mater 52:461. doi: CrossRefGoogle Scholar
  15. 15.
    Zhang YD, Esling C, Gong ML, Vincent G (2006) Scr Mater 54:1897. doi: CrossRefGoogle Scholar
  16. 16.
    Nakamichi S, Tsurekawa S, Morizono Y, Watanabe T, Nishida M, Chiba A (2005) J Mater Sci 40:3191. doi: CrossRefGoogle Scholar
  17. 17.
    Aharoni A (1998) J Appl Phys 83:3432. doi: CrossRefGoogle Scholar
  18. 18.
    Zhang YD, Esling C, Calcagnotto M, Gong ML, Zhao X, Zuo L (2007) J Phys D Appl Phys 40:6501. doi: CrossRefGoogle Scholar
  19. 19.
    Zhang YD, Esling C, Lecomte JS, He CS, Zhao X, Zuo L (2005) Acta Mater 53:5213. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education)Northeastern UniversityShenyangPeople’s Republic of China

Personalised recommendations