Journal of Materials Science

, Volume 43, Issue 18, pp 6116–6121 | Cite as

Reaction-sintering of lead-free piezoceramic compositions: (0.95 − x)Na0.5K0.5NbO3–0.05LiTaO3xLiSbO3

  • Pornsuda BomlaiEmail author
  • Sureewan Sukprasert
  • Supasarote Muensit
  • Steven J. Milne


Incorporation of LiSbO3 into the lead-free piezoceramic composition 0.95Na0.5K0.5NbO3–0.05LiTaO3 produced a change from an orthorhombic to tetragonal crystal system in samples produced by reaction-sintering. The inferred limit of solid solution along the compositional join, (0.95 − x)Na0.5K0.5NbO3–0.05LiTaO3xLiSbO3, occurred at x ~ 0.06. Differential scanning calorimetry indicated broad peaks at temperatures associated with ferroelectric–paraelectric transitions. The transition temperatures decreased with increasing values of x, up to x = 0.06. Microstructures showed secondary grain growth; a slight decrease in grain-size with increasing LiSbO3 modification was identified.


Morphotropic Phase Boundary LiTaO3 NaNbO3 Secondary Recrystallization Peak Intensity Ratio 



This work was supported by Thailand Research Fund (TRF) and Commission on Higher Education.


  1. 1.
    European Council (2003) Official Journal of the European Union L37:19Google Scholar
  2. 2.
    IEEE (1987) IEEE Standard on piezoelectricity, ANSI/IEEE standard no. 176 IEEE, New YorkGoogle Scholar
  3. 3.
    Guo Y, Kakimoto K, Ohsato H (2005) Mater Lett 59:241. doi: CrossRefGoogle Scholar
  4. 4.
    Saito Y, Takao H, Tani I, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Nature 432:84. doi: CrossRefGoogle Scholar
  5. 5.
    Saito Y, Takao H (2006) Ferroelectrics 338:17. doi: CrossRefGoogle Scholar
  6. 6.
    Zuo R, Rödel J, Chen R, Li L (2006) J Am Ceram Soc 89:2010. doi: CrossRefGoogle Scholar
  7. 7.
    Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Appl Phys Lett 87(182905):1Google Scholar
  8. 8.
    Li J-F, Wang K, Zhang B-P, Zhang L-M (2006) J Am Ceram Soc 89:706. doi: CrossRefGoogle Scholar
  9. 9.
    Wang R, Xie R-J, Hanada K, Matsusaki K, Bando H, Itoh M (2005) Phys Status Solidi 202:R57. doi: CrossRefGoogle Scholar
  10. 10.
    Zhang B-P, Li J-F, Wang K, Zhang H (2006) J Am Ceram Soc 89:1605. doi: CrossRefGoogle Scholar
  11. 11.
    Zang G-Z, Wang J-F, Chen H-C, Su W-B, Wang C-M, Qi P, Ming B-Q, Du J, Zheng L-M, Zhang S, Shrout TR (2006) Appl Phys Lett 88:212908. doi: CrossRefGoogle Scholar
  12. 12.
    R-Marcos F, Ochoa P, Fernandez JF (2007) J Eur Ceram Soc 27:4125. doi: CrossRefGoogle Scholar
  13. 13.
    Skidmore TA, Milne SJ (2007) J Mater Res 22:2265. doi: CrossRefGoogle Scholar
  14. 14.
    Powder diffraction File No. 32–0822, International Centre for Diffraction Data, Newton Square, PA, 2001Google Scholar
  15. 15.
    Powder diffraction File No. 71–0945, International Centre for Diffraction Data, Newton Square, PA, 2001Google Scholar
  16. 16.
    Bomlai P, Wichianrat P, Muensit S, Milne SJ (2007) J Am Ceram Soc 90:1650. doi: CrossRefGoogle Scholar
  17. 17.
    Powder diffraction File No. 84–2003 (2001) International Centre for Diffraction Data, Newton Square, PAGoogle Scholar
  18. 18.
    Powder Diffraction File No. 48–0997 (2001) International Centre for Diffraction Data, Newton Square, PAGoogle Scholar
  19. 19.
    Wang Y, Damjanovic D, Klein N, Hollenstein E, Setter N (2007) J Am Ceram Soc 90:3485. doi: CrossRefGoogle Scholar
  20. 20.
    Lin D, Kwok KW, Chan HLW (2007) J Phys D Appl Phys 40:6060CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Pornsuda Bomlai
    • 1
    Email author
  • Sureewan Sukprasert
    • 1
  • Supasarote Muensit
    • 2
  • Steven J. Milne
    • 3
  1. 1.Materials Science Program, Faculty of SciencePrince of Songkla UniversitySongkhlaThailand
  2. 2.Department of Physics, Faculty of SciencePrince of Songkla UniversitySongkhlaThailand
  3. 3.Institute for Materials ResearchUniversity of LeedsLeedsUK

Personalised recommendations