Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6144–6158 | Cite as

A critical assessment of the methods for intercalating anionic surfactants in layered double hydroxides

  • Lumbidzani Moyo
  • Nontete Nhlapo
  • Walter W. FockeEmail author
Article

Abstract

Anionic surfactant intercalated layered double hydroxides (LDH) of high purity are easily prepared via direct coprecipitation and also by the ion exchange method provided that the precursor contains a monovalent anion, e.g., LDH–Cl or LDH–NO3. However, LDH–CO3 is an attractive starting material as it is commercially available in bulk form owing to large-scale applications as a PVC stabilizer and acid scavenger in polyolefins. Thus, intercalation of dodecyl sulfate and dodecylbenzenesulfonate into a commercial (LDH) with approximate composition [Mg0.654Al0.346(OH)2](CO3)0.173 · 0.5H2O] was explored. Direct ion exchange is difficult as the carbonate is held tenaciously. In the regeneration method it is removed by thermal treatment and the surfactant form obtained by reaction with the layered double hydroxide that forms in aqueous medium. Unfortunately the resulting products are impure, poorly crystallized and only partial intercalation is achieved. Better results were obtained using water-soluble organic acids, e.g., acetic, butyric, or hexanoic acid, to aid decarbonation of LDH–CO3. Intercalation proceeded at ambient temperatures with the precursor powder suspended in an aqueous dispersion of the anionic surfactant. The carboxylic acids are believed to assist intercalation by facilitating the elimination of the carbonate ions present in the anionic clay galleries.

Keywords

Surfactant Sodium Dodecyl Sulfate Layer Double Hydroxide Basal Spacing Laurate 

Notes

Acknowledgements

The authors thank Mrs. C. Harnisch of the Leibniz-Institut für Polymerforschung, Dresden e.V. for the Py/GC/MS analysis. Financial support for this research, from the Institutional Research Development Programme (IRDP), the South African Cooperation Fund for Scientific and Technological Developments (NEPAD), the THRIP program of the Department of Trade and Industry and the National Research Foundation of South Africa, as well as Xyris Technology CC, is gratefully acknowledged.

References

  1. 1.
    Brindley GW, Kikkawa S (1979) Am Mineral 64:836Google Scholar
  2. 2.
    Miyata S (1980) Clays Clay Miner 28:50. doi: https://doi.org/10.1346/CCMN.1980.0280107 Google Scholar
  3. 3.
    Kopka H, Beneke K, Lagaly G (1988) J Colloid Interface Sci 123:427. doi: https://doi.org/10.1016/0021-9797(88)90263-9 Google Scholar
  4. 4.
    Reichle WT (1986) Chemtech 16:58Google Scholar
  5. 5.
    Jones W, Chibwe M (1990) In: Mitchell IV (eds) Pillared layered structure: current trends and applications. Elsevier, London, p 67Google Scholar
  6. 6.
    Cavani F, Trifirò F, Vaccari A (1991) Catal Today 11:173. doi: https://doi.org/10.1016/0920-5861(91)80068-K Google Scholar
  7. 7.
    Miyata S, Kumura T (1973) Chem Lett 843. doi: https://doi.org/10.1246/cl.1973.843 Google Scholar
  8. 8.
    Kanoh T, Shichi T, Takagi K (1999) Chem Lett 17. doi: https://doi.org/10.1246/cl.1999.117 Google Scholar
  9. 9.
    Itoh T, Ohta N, Shichi T, Yui T, Takagi K (2003) Langmuir 19:9120. doi: https://doi.org/10.1021/la0302448 Google Scholar
  10. 10.
    Xu ZP, Braterman PS (2003) J Mater Chem 13:268. doi: https://doi.org/10.1039/b207540g Google Scholar
  11. 11.
    Smyth JR, Bish DL (1988) Crystal structures and cation sites of rock forming minerals. Allen and Unwin, London, p 69Google Scholar
  12. 12.
    Bellotto M, Rebours B, Clause O, Lynch L (1996) J Phys Chem 100:8527. doi: https://doi.org/10.1021/jp960039j Google Scholar
  13. 13.
    Porter MR (1994) Handbook of surfactants, 2nd edn. Chapman and HallGoogle Scholar
  14. 14.
    Tadros TF (2005) Applied surfactants principles and applications. Wiley-VCH Verlag GmbH and Co., Heppenheim, p 53Google Scholar
  15. 15.
    Crepaldi EL, Pavan PC, Tronto J, Cardoso LP, Valim JB (2002) J Colloid Interface Sci 248:429. doi: https://doi.org/10.1006/jcis.2002.8214 Google Scholar
  16. 16.
    Harwell JH, Hoskins JC, Schechter RS, Wade WH (1985) Langmuir 1:251. doi: https://doi.org/10.1021/la00062a013 Google Scholar
  17. 17.
    Bitting D, Harwell JH (1987) Langmuir 3:500Google Scholar
  18. 18.
    Chandler D (2005) Nature 437:640. doi: https://doi.org/10.1038/nature04162 Google Scholar
  19. 19.
    Whitesides GM, Mathias JP, Seto CT (1991) Science 254:1312. doi: https://doi.org/10.1126/science.1962191 Google Scholar
  20. 20.
    O’Hare D (1991) In: Bruce DW, O’Hare D (eds) Inorganic materials. Wiley, New York, p 167Google Scholar
  21. 21.
    Pavan PC, Crepaldi EL, Valim JB (2000) J Colloid Interface Sci 229:346. doi: https://doi.org/10.1006/jcis.2000.7031 Google Scholar
  22. 22.
    Dèkány I, Haraszti T (1996) Colloid Surf A 123–124:391. doi: https://doi.org/10.1016/S0927-7757(96)03804-6 Google Scholar
  23. 23.
    Pavan PC, Gomes GA, Valim JB (1998) Microporous Mesoporous Mater 21:659. doi: https://doi.org/10.1016/S1387-1811(98)00054-7 Google Scholar
  24. 24.
    Pavan PC, Crepaldi EL, Gomes GA, Valim JB (1999) Colloid Surf A 154:399. doi: https://doi.org/10.1016/S0927-7757(98)00847-4 Google Scholar
  25. 25.
    Ulibarri MA, Pavlovic I, Barriga C, Hermosín MC, Cornejo J (2001) Appl Clay Sci 18:17. doi: https://doi.org/10.1016/S0169-1317(00)00026-0 Google Scholar
  26. 26.
    Anbarasan R, Lee WD, Im SS (2005) Bull Mater Sci 28:145. doi: https://doi.org/10.1007/BF02704234 Google Scholar
  27. 27.
    Colvin VL, Goldstein AN, Alivisatos AP (1992) J Am Chem Soc 114:5221. doi: https://doi.org/10.1021/ja00039a038 Google Scholar
  28. 28.
    Fendler JH, Meldrum FC (1995) Adv Mater 7:607. doi: https://doi.org/10.1002/adma.19950070703 Google Scholar
  29. 29.
    Messersmith PB, Stupp SI (1995) Chem Mater 7:454. doi: https://doi.org/10.1021/cm00051a004 Google Scholar
  30. 30.
    Dèkány I, Berger F, Imrik K, Lagaly G (1997) Colloid Polym Sci 275:681Google Scholar
  31. 31.
    Clearfield A, Kieke M, Kwan J, Colon JL, Wang RC (1991) J Incl Phenom Mol Recognit Chem 11:361. doi: https://doi.org/10.1007/BF01041414 Google Scholar
  32. 32.
    Labajos FM, Rives V, Ulibarri MA (1992) J Mater Sci 27:1546. doi: https://doi.org/10.1007/BF00542916 Google Scholar
  33. 33.
    Kloprogge JT, Hickey L, Frost RL (2002) J Mater Sci Lett 21:603. doi: https://doi.org/10.1023/A:1015655018529 Google Scholar
  34. 34.
    Takagi K, Sichi T, Usami H, Sawaki Y (1993) J Am Chem Soc 115:4339. doi: https://doi.org/10.1021/ja00063a060 Google Scholar
  35. 35.
    Yang K, Zhu L, Xing B (2007) Environ Pollut 145:571. doi: https://doi.org/10.1016/j.envpol.2006.04.024 Google Scholar
  36. 36.
    Meyn M, Beneke K, Lagaly G (1990) Inorg Chem 29:5201Google Scholar
  37. 37.
    You Y, Zhao H, Vance GF (2002) Colloids Surf A Physicochem Eng Aspects 205:161. doi: https://doi.org/10.1016/S0927-7757(01)01137-2 Google Scholar
  38. 38.
    Zhao H, Nagy KL (2004) J Colloid Interface Sci 274:613. doi: https://doi.org/10.1016/j.jcis.2004.03.055 Google Scholar
  39. 39.
    Xu ZP, Braterman PS (2007) J Phys Chem 13:268Google Scholar
  40. 40.
    Pesic L, Salipurovic S, Markovic V, Vucelic D, Kagunya W, Jones W (1992) J Mater Chem 2:1069. doi: https://doi.org/10.1039/jm9920201069 Google Scholar
  41. 41.
    Newman SP, Jones W (1998a) N J Chem 22:105. doi: https://doi.org/10.1039/a708319j Google Scholar
  42. 42.
    Drezdzon MA (1988) Inorg Chem 27:4628. doi: https://doi.org/10.1021/ic00298a024 Google Scholar
  43. 43.
    Trujillano R, Holgado MJ, González JL, Rives V (2005) Solid State Sci 7:931. doi: https://doi.org/10.1016/j.solidstatesciences.2005.03.003 Google Scholar
  44. 44.
    Hussein MZB, Zainal Z, Ming CY (2000) J Mater Sci Lett 19:879. doi: https://doi.org/10.1023/A:1006745716997 Google Scholar
  45. 45.
    Crepaldi EL, Pavan PC, Valim JB (1999) Chem Commun (Camb) 155. doi: https://doi.org/10.1039/a808567f
  46. 46.
    Miyata S (1983) Clays Clay Miner 31:305. doi: https://doi.org/10.1346/CCMN.1983.0310409 Google Scholar
  47. 47.
    Boehm H-P, Steinle J, Vieweger C (1977) Angew Chem 89:259. doi: https://doi.org/10.1002/ange.19770890416 Google Scholar
  48. 48.
    Crepaldi EL, Pavan PC, Valim JB (2000) J Mater Chem 10:1337. doi: https://doi.org/10.1039/a909436i Google Scholar
  49. 49.
    Venugopal BR, Shivakumara G, Rajamathi M (2006) J Colloid Interface Sci 32:141Google Scholar
  50. 50.
    You Y, Zhao H, Vance GF (2002) J Mater Chem 12:907. doi: https://doi.org/10.1039/b106811c Google Scholar
  51. 51.
    Dimotakis ED, Pinnavaia TJ (1990) Inorg Chem 29:2393. doi: https://doi.org/10.1021/ic00338a001 Google Scholar
  52. 52.
    Miyata S, Okada A (1977) Clays Clay Miner 25:14. doi: https://doi.org/10.1346/CCMN.1977.0250103 Google Scholar
  53. 53.
    Sato T, Mikako T, Endo T, Shimada M (1987) J Chem Technol Biotechnol 39:275Google Scholar
  54. 54.
    Chibwe K, Jones W (1989) J Chem Soc Chem Commun 926. doi: https://doi.org/10.1039/c39890000926
  55. 55.
    Chen W, Qu B (2003) Chem Mater 15:3208. doi: https://doi.org/10.1021/cm030044h Google Scholar
  56. 56.
    Bouraada M, Lafjah M, Ouali MS, de Menorval LC (2008) J Hazard Mater 153:911. doi: https://doi.org/10.1016/j.jhazmat.2007.09.076 Google Scholar
  57. 57.
    Costa FR, Leuteritz A, Wagenknecht U, Jehnichen D, Häusßler L, Heinrich G (2008) Appl Clay Sci 38:153. doi: https://doi.org/10.1016/j.clay.2007.03.006 Google Scholar
  58. 58.
    Hansen HCB, Taylor RM (1991) Clay Miner 26:311. doi: https://doi.org/10.1180/claymin.1991.026.3.02 Google Scholar
  59. 59.
    Carlino S, Hudson MJ (1994) J Mater Chem 4:99. doi: https://doi.org/10.1039/jm9940400099 Google Scholar
  60. 60.
    Carlino S, Hudson MJ, Husain SW, Knowles JA (1996) Solid State Ionics 84:117. doi: https://doi.org/10.1016/S0167-2738(96)83014-1 Google Scholar
  61. 61.
    Nhlapo N, Motumi T, Landman E, Verryn SMC, Focke WW (2008) J Mater Sci 43:1033. doi: https://doi.org/10.1007/s10853-007-2251-0 Google Scholar
  62. 62.
    Anbarasan R, Lee WD, Im SS (2008) J Serb Chem Soc 73:321. doi: https://doi.org/10.2298/JSC0803321A Google Scholar
  63. 63.
    Vaccari A (1998) Catal Today 41:53. doi: https://doi.org/10.1016/S0920-5861(98)00038-8 Google Scholar
  64. 64.
    Evans DG, Duan X (2006) Chem Commun (Camb) 485. doi: https://doi.org/10.1039/b510313b
  65. 65.
    Khan AI, O’Hare D (2002) J Mater Chem 12:3191. doi: https://doi.org/10.1039/b204076j Google Scholar
  66. 66.
    Leroux F, Besse J-P (2001) Chem Mater 13:3507. doi: https://doi.org/10.1021/cm0110268 Google Scholar
  67. 67.
    Fischer H (2003) Mater Sci Eng C 23:763. doi: https://doi.org/10.1016/j.msec.2003.09.148 Google Scholar
  68. 68.
    Costa FR, Abdel-Goad M, Wagenknecht U, Heinrich G (2005) Polymer (Guildf) 46:4447. doi: https://doi.org/10.1016/j.polymer.2005.02.027 Google Scholar
  69. 69.
    Costa FR, Wagenknecht U, Jehnichen U, Abdel-Goad M, Heinrich G (2006) Polymer (Guildf) 47:1649. doi: https://doi.org/10.1016/j.polymer.2005.12.011 Google Scholar
  70. 70.
    Wang B, Zhang H, Evans DG, Duan X (2005) J Mater Chem Phys 92:190. doi: https://doi.org/10.1016/j.matchemphys.2005.01.013 Google Scholar
  71. 71.
    Choy J-H, Kwak S-Y, Park J-S, Jeong Y-J, Portier J (1999) J Am Chem Soc 121:1399. doi: https://doi.org/10.1021/ja981823f Google Scholar
  72. 72.
    Carlino S, Hudson MJ (1995) J Mater Chem 5:1433. doi: https://doi.org/10.1039/jm9950501433 Google Scholar
  73. 73.
    Adachi-Pagano M, Forano C, Besse J-P (2000) Chem Commun (Camb) 91. doi: https://doi.org/10.1039/a908251d
  74. 74.
    Reichle WT (1985) J Catal 94:547. doi: https://doi.org/10.1016/0021-9517(85)90219-2 Google Scholar
  75. 75.
    Rey F, Fornés V, Rojo JM (1992) J Chem Soc Faraday Trans 88:2233. doi: https://doi.org/10.1039/ft9928802233 Google Scholar
  76. 76.
    Frost RL, Ding Z, Martens WN, Kloprogge JT (2003) J Therm Anal Calorim 71:429. doi: https://doi.org/10.1023/A:1022835305846 Google Scholar
  77. 77.
    Kandare E, Hossenlopp JM (2006) Inorg Chem 45:3766. doi: https://doi.org/10.1021/ic060071k Google Scholar
  78. 78.
    Coates J (2000) In: Meyer RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, p 10815Google Scholar
  79. 79.
    Perez-Ramirez J, Mul G, Kapteijn F, Moulijn JA (2001) J Mater Sci 11:821Google Scholar
  80. 80.
    Kloprogge JT, Frost RL (1999) Phys Chem Chem Phys 1:1641. doi: https://doi.org/10.1039/a808496c Google Scholar
  81. 81.
    Kloprogge JT, Frost RL (2000) Appl Catal A 204:269. doi: https://doi.org/10.1016/S0926-860X(00)00697-9 Google Scholar
  82. 82.
    Rajamathi JT, Ravishankar N, Rajamathi M (2005) Solid State Sci 7:195. doi: https://doi.org/10.1016/j.solidstatesciences.2004.10.034 Google Scholar
  83. 83.
    Nakagaki M, Yokoyama S (1985) J Pharm Sci 74:1047Google Scholar
  84. 84.
    Bethell D, Fessey RE, Namwindwa E, Robetrts DW (2001) J Chem Soc Perkin Trans 2:1489. doi: https://doi.org/10.1039/b102957f
  85. 85.
    Angarska JK, Tachev KD, Kralchevsky PA, Mehreteab A, Broze G (1998) J Colloid Interface Sci 200:31. doi: https://doi.org/10.1006/jcis.1997.5334 Google Scholar
  86. 86.
    Crepaldi EL, Tronto J, Cardoso LP, Valim JB (2002) Colloid Surf A 211:103. doi: https://doi.org/10.1016/S0927-7757(02)00233-9 Google Scholar
  87. 87.
    Parker ML, Milestone NB, Newman RH (1995) Ind Eng Chem Res 34:1196. doi: https://doi.org/10.1021/ie00043a023 Google Scholar
  88. 88.
    Bontchev RP, Liu S, Krumhansl JL, Voigt J, Nenoff TM (2003) Chem Mater 15:3669. doi: https://doi.org/10.1021/cm034231r Google Scholar
  89. 89.
    Bish DL (1980) Bull Mineral (Paris) 103:170Google Scholar
  90. 90.
    Iyi N, Matsumoto T, Kaneko Y, Kitamura K (2004) Chem Mater 16:2926. doi: https://doi.org/10.1021/cm049579g Google Scholar
  91. 91.
    Iyi N, Okamoto K, Kaneko Y, Matsumoto T (2005) Chem Lett 34:932. doi: https://doi.org/10.1246/cl.2005.932 Google Scholar
  92. 92.
    Jobbágy M, Regazoni AE (2004) J Colloid Interface Sci 275:345. doi: https://doi.org/10.1016/j.jcis.2004.01.082 Google Scholar
  93. 93.
    Hu G, O’Hare D (2005) J Am Chem Soc 127:17808. doi: https://doi.org/10.1021/ja0549392 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lumbidzani Moyo
    • 1
  • Nontete Nhlapo
    • 1
  • Walter W. Focke
    • 2
    Email author
  1. 1.Department of Chemistry, Institute of Applied MaterialsUniversity of PretoriaPretoriaSouth Africa
  2. 2.Department of Chemical EngineeringUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations