Journal of Materials Science

, Volume 43, Issue 20, pp 6784–6797 | Cite as

Dielectric and piezoelectric properties of (1 − x)(Na0.5K0.5)NbO3xBaTiO3 ceramics

  • Cheol-Woo Ahn
  • Chang-Hak Choi
  • Hwi-Yeol Park
  • Sahn NahmEmail author
  • Shashank Priya


This manuscript reviews the studies on phase transitions, synthesis, and piezoelectric/dielectric properties of (1 − x)(Na0.5K0.5)NbO3xBaTiO3 ceramics (0.0 ≤ x ≤ 1.0). Three phase transition regions were observed in (1 − x)(Na0.5K0.5)NbO3xBaTiO3 ceramics corresponding to orthorhombic, tetragonal, and cubic phases. The composition 0.95(Na0.5K0.5)NbO3–0.05BaTiO3, which lies on the boundary of orthorhombic and tetragonal phases, was found to exhibit excellent piezoelectric properties. The properties of this composition were further improved by addition of various additives making it suitable for multilayer actuator application. The composition 0.06(Na0.5K0.5)NbO3–0.94BaTiO3 was found to lie on the boundary of tetragonal and cubic phases. This composition exhibited the microstructure with small grain size and excellent dielectric properties suitable for multilayer ceramic capacitor application. Based on the studies reported in literature, we expect the modified (1 − x)(Na0.5K0.5)NbO3xBaTiO3 system to become the leading lead-free candidate for piezoelectric and dielectric components.


MnO2 BaTiO3 Piezoelectric Property NaNbO3 Phase Transition Region 



The authors gratefully acknowledge the financial support from the office of Basic Energy Science, Department of Energy.


  1. 1.
    Haertling GH (1999) J Am Ceram Soc 82(4):797CrossRefGoogle Scholar
  2. 2.
    Shrout TR, Zhang SJ (2007) J Electroceram 19:111CrossRefGoogle Scholar
  3. 3.
    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T et al (2004) Nature 432:84. doi: CrossRefGoogle Scholar
  4. 4.
    Hollenstein E, Davis M, Damjanovic D, Setter N (2005) Appl Phys Lett 87:182905. doi: CrossRefGoogle Scholar
  5. 5.
    Saito Y, Takao H (2006) Ferroelectrics 338:17. doi: CrossRefGoogle Scholar
  6. 6.
    Wang R, Xie R, Hanada K, Matsusaki K, Bando H, Itoh M (2005) Phys Status Solidi A Appl Res 202:R57. doi: CrossRefGoogle Scholar
  7. 7.
    Hollenstein E, Damjanovic D, Setter N (2007) J Eur Ceram Soc 27:4093. doi: CrossRefGoogle Scholar
  8. 8.
    Zhao P, Zhang BP, Li JF (2007) Appl Phys Lett 91:172901. doi: CrossRefGoogle Scholar
  9. 9.
    Guo Y, Kakimoto K, Ohsato H (2004) Appl Phys Lett 85:4121. doi: CrossRefGoogle Scholar
  10. 10.
    Zang GZ, Wang JF, Chen HC, Su WB, Wang CM, Qi P et al (2006) Appl Phys Lett 88:212908. doi: CrossRefGoogle Scholar
  11. 11.
    Lang SB, Zhu W, Cross LE (2006) Ferroelectrics 336:15. doi: CrossRefGoogle Scholar
  12. 12.
    Takao H, Saito Y, Aoki Y, Horibuchi K (2006) J Am Ceram Soc 89:1951. doi: CrossRefGoogle Scholar
  13. 13.
    Lin D, Kwok KW, Tian H, Wong H, Chan L-W (2007) J Am Ceram Soc 90(5):1458. doi: CrossRefGoogle Scholar
  14. 14.
    Zhang S, Xia R, Shrout TR, Zang G, Wang J (2006) J Appl Phys 100:104108. doi: CrossRefGoogle Scholar
  15. 15.
    Matsubara M, Kikuta K, Hirano S (2005) J Appl Phys 97:114105. doi: CrossRefGoogle Scholar
  16. 16.
    Matsubara M, Yamaguchi T, Sakamoto W, Kikuta K, Yogo T, Hirano S (2005) J Am Ceram Soc 88:1190. doi: CrossRefGoogle Scholar
  17. 17.
    Yoo J, Hong J, Lee H, Jeong Y, Lee B, Song H et al (2006) Sens Actuators A Phys 126:41. doi: CrossRefGoogle Scholar
  18. 18.
    Choy SH, Wang XX, Chan HLW, Choy CL (2006) Appl Phys A 82:715. doi: CrossRefGoogle Scholar
  19. 19.
    Yuan Y, Zhang S, Zhou X, Liu J (2006) Jpn J Appl Phys 45:831. doi: CrossRefGoogle Scholar
  20. 20.
    Lin D, Xiao D, Zhu J, Yu P (2006) Appl Phys Lett 88:062901. doi: CrossRefGoogle Scholar
  21. 21.
    Wang XX, Tang XG, Chan HLW (2004) Appl Phys Lett 85:91. doi: CrossRefGoogle Scholar
  22. 22.
    Hiruma Y, Aoyagi R, Nagata H, Takenaka T (2004) Jpn J Appl Phys 43:7556. doi: CrossRefGoogle Scholar
  23. 23.
    Takenaka T, Nagata H (1999) Key Eng Mater 157–158:57Google Scholar
  24. 24.
    Takenaka T, Nagata H (2005) J Eur Ceram Soc 25:2693. doi: CrossRefGoogle Scholar
  25. 25.
    Choy SH, Wang XX, Chan HLW, Choy CL (2006) Ferroelectrics 336:69. doi: CrossRefGoogle Scholar
  26. 26.
    Song JS, Jeong SJ, Kim IS, Lee DS, Park EC (2006) Ferroelectrics 338:3. doi: CrossRefGoogle Scholar
  27. 27.
    Zeng JT, Kwok KW, Chan HLW (2006) J Am Ceram Soc 89:2828Google Scholar
  28. 28.
    Wang X, Chan HLW, Choy CL (2003) Solid State Commun 125:395. doi: CrossRefGoogle Scholar
  29. 29.
    Zhao S, Li G, Ding A, Wang T, Yin Q (2006) J Phys D Appl Phys 39:2277. doi: CrossRefGoogle Scholar
  30. 30.
    Takenaka T, Maruyama K, Sakata K (1991) Jpn J Appl Phys 30:2236. doi: CrossRefGoogle Scholar
  31. 31.
    Nagata H, Yoshida M, Makiuchi Y, Takenaka T (2003) Jpn J Appl Phys 42:7401. doi: CrossRefGoogle Scholar
  32. 32.
    Hiruma Y, Makiuchi Y, Aoyagi R, Nagata H, Takenaka T (2006) Ceram Trans 174:139Google Scholar
  33. 33.
    Wu L, Xiao D, Lin D, Zhu J, Yu P (2005) Jpn J Appl Phys 44:8515. doi: CrossRefGoogle Scholar
  34. 34.
    Lin D, Xia D, Zhu J, Yu P (2005) Phys Status Solidi A Appl Res 202:R89. doi: CrossRefGoogle Scholar
  35. 35.
    Wang R, Tachibana N, Miura N, Hanada K, Matsusaki K, Bando H et al (2006) Ferroelectrics 331:135. doi: CrossRefGoogle Scholar
  36. 36.
    Maeder MD, Damjanovic D, Setter N (2004) J Electroceram 13:385CrossRefGoogle Scholar
  37. 37.
    Chen W, Li Y, Xu Q, Zhou J (2005) J Electroceram 15:229. doi: CrossRefGoogle Scholar
  38. 38.
    Berlincourt D (1971) In: Mattiat OE (ed) Ultrasonic transducer materials: piezoelectric crystals and ceramics. Plenum, London, ch. 2Google Scholar
  39. 39.
    Ming BQ, Wang JF, Qi P, Zang GZ (2007) J Appl Phys 101:054103. doi: CrossRefGoogle Scholar
  40. 40.
    Park HY, Ahn CW, Song HC, Lee JH, Nahm S, Uchino K et al (2006) Appl Phys Lett 89:062906. doi: CrossRefGoogle Scholar
  41. 41.
    Ahn CW, Park HY, Nahm S, Uchino K, Lee HG, Lee HJ (2007) Sens Actuators A Phys 136:255. doi: CrossRefGoogle Scholar
  42. 42.
    Cho KH, Park HY, Ahn CW, Nahm S, Lee HG, Lee HJ (2007) J Am Ceram Soc 90(6):1946. doi: CrossRefGoogle Scholar
  43. 43.
    Park HY, Cho KH, Paik DS, Nahm S, Lee HG, Kim DH (2007) J Appl Phys 102:124101. doi: CrossRefGoogle Scholar
  44. 44.
    Ahn CW, Song HC, Nahm S, Park SH, Uchino K, Priya S et al (2005) Jpn J Appl Phys 44(44):L1361. doi: CrossRefGoogle Scholar
  45. 45.
    Shimojo Y, Wang R, Sekiya T, Matsuzaki K (2005) J Korean Phys Soc 46(1):48Google Scholar
  46. 46.
    Park SH, Ahn CW, Nahm S, Song JS (2004) Jpn J Appl Phys 43:L1072CrossRefGoogle Scholar
  47. 47.
    Park HY, Ahn CW, Cho KH, Nahm S, Lee HG, Kang HW et al (2007) J Am Ceram Soc 90(12):4066Google Scholar
  48. 48.
    Choi CH, Ahn CW, Nahm S, Hong JO, Lee JS (2007) Appl Phys Lett 90:132905CrossRefGoogle Scholar
  49. 49.
    Raseand DE, Roy R (1953) The Pennsylvania State University, College of Mineral Industries; Eighth Quarterly Progress Report, April 1 to June 30, Appendix II, 16Google Scholar
  50. 50.
    Irleand E, Blachnik R (1991) Thermochim Acta 185(2):355. doi: CrossRefGoogle Scholar
  51. 51.
    Wu L, Wu TS, Wei CC, Liu HC (1983) J Phys C Solid State Phys 16:2823. doi: CrossRefGoogle Scholar
  52. 52.
    Ahn CW, Karmarkar M, Viehland D, Kang DH, Bae KS, Priya S, Ferroelectrics (accepted)Google Scholar
  53. 53.
    Ahn CW, Nahm S, Yoo MJ, Lee HG, Priya S (2008) J Mater Sci 43:6016CrossRefGoogle Scholar
  54. 54.
    Ahn CW, Nahm S, Karmarkar M, Viehland D, Kang DH, Bae KS et al (2008) Mater Lett 62:3594CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Cheol-Woo Ahn
    • 1
  • Chang-Hak Choi
    • 2
  • Hwi-Yeol Park
    • 2
  • Sahn Nahm
    • 2
    Email author
  • Shashank Priya
    • 1
  1. 1.Department of Materials Science and EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Department of Materials Science and EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations