Advertisement

Journal of Materials Science

, Volume 43, Issue 18, pp 6182–6192 | Cite as

Evaluation of additive effects and homogeneity of the starting mixture on the nuclei-growth processes of barium titanate via a solid state route

  • Chie Ando
  • Toshimasa Suzuki
  • Youichi Mizuno
  • Hiroshi Kishi
  • Sayuri Nakayama
  • Mamoru Senna
Article

Abstract

In an attempt to obtain finest possible microparticles of BaTiO3 (BT) with highest possible tetragonality via a solid state route, starting mixtures comprising BaCO3 and TiO2 were subjected to various pretreatments including addition of glycine and mechanical activation. Reaction processes were monitored by the changes in the weight, crystallinity, and morphology in detail. While mechanical activation with glycine significantly increased the rate of reaction and homogeneity of the particle size of the product, BT, simultaneous particle growth of BT was intolerably acute for micro-electronic devices. The fast particle coarsening was predominated by the coalescence of BT tiny particles formed around titania. A mixture with higher homogeneity was attained by using finer starting materials under wet mixing, avoiding significant mechanical stressing. Particle growth of BT was suppressed to ca. 100 nm to obtain fully crystallized BT particles without significant loss of tetragonality and, hence, close to meet our requirements for MLCCs.

Keywords

TiO2 TiO2 Particle BaCO3 Narrow Particle Size Distribution Solid State Route 

Notes

Acknowledgement

The authors are thankful to Mr. T. Hagiwara for Rietveld analysis.

References

  1. 1.
    Mizuno Y, Hagiwara T, Kishi H (2007) J Ceram Soc Jpn 115:360. doi: https://doi.org/10.2109/jcersj.115.360 CrossRefGoogle Scholar
  2. 2.
    Arlt G, Hennings D, With G (1985) J Appl Phys 58:1619. doi: https://doi.org/10.1063/1.336051 CrossRefGoogle Scholar
  3. 3.
    Dawson WJ (1988) Am Ceram Soc Bull 67:1673Google Scholar
  4. 4.
    Hennings D, Rosenstein G, Schreinemacher H (1991) J Eur Ceram Soc 8:107. doi: https://doi.org/10.1016/0955-2219(91)90116-H CrossRefGoogle Scholar
  5. 5.
    Wada N (2004) J Soc Powder Technol Jpn 41:35Google Scholar
  6. 6.
    Hennings DFK, Schreinemacher BS, Schreinemacher H (2001) J Am Ceram Soc 84:2777CrossRefGoogle Scholar
  7. 7.
    Buscaglia MT, Bassoli M, Buscaglia V, Alessio R (2005) J Am Ceram Soc 88:2374. doi: https://doi.org/10.1111/j.1551-2916.2005.00451.x CrossRefGoogle Scholar
  8. 8.
    Ando C, Yanagawa R, Chazono H, Kishi H, Senna M (2004) J Mater Res 19:3592. doi: https://doi.org/10.1557/JMR.2004.0461 CrossRefGoogle Scholar
  9. 9.
    Yanagawa R, Sennna M, Ando C, Chazono H, Kishi H (2007) J Am Ceram Soc 90:809. doi: https://doi.org/10.1111/j.1551-2916.2007.01498.x CrossRefGoogle Scholar
  10. 10.
    Ando C, Chazono H, Kishi H (2004) Key Eng Mater 269:161CrossRefGoogle Scholar
  11. 11.
    Oguchi H, Ando C, Chazono H, Kishi H, Senna M (2005) J Phys France IV 128:33CrossRefGoogle Scholar
  12. 12.
    Ando C, Kishi H, Oguchi H, Senna M (2006) J Am Ceram Soc 89:1709. doi: https://doi.org/10.1111/j.1551-2916.2006.00917.x CrossRefGoogle Scholar
  13. 13.
    Kubo T, Kato M, Fujita T (1967) Kogyo Kagaku Zasshi 70:847CrossRefGoogle Scholar
  14. 14.
    Niepce JC, Thomas G (1990) Solid State Ionics 43:69. doi: https://doi.org/10.1016/0167-2738(90)90472-4 CrossRefGoogle Scholar
  15. 15.
    Fujikawa Y, Yamane F, Nomura T (2003) J Jpn Soc Powder Metall 50:751CrossRefGoogle Scholar
  16. 16.
    Lotnyk A, Senz S, Hesse D (2006) Solid State Ionics 177:429. doi: https://doi.org/10.1016/j.ssi.2005.12.027 CrossRefGoogle Scholar
  17. 17.
    Lotnyk A, Senz S, Hesse D (2007) Acta Mater 55:2671. doi: https://doi.org/10.1016/j.actamat.2006.12.022 CrossRefGoogle Scholar
  18. 18.
    (a) Senna M (1993) Solid State Ionics 3:63; (b) Senna M (2001) Mater Sci Eng A 39:304; (c) Senna M (2002) Ann Chim Sci Mat 27:3Google Scholar
  19. 19.
    Ando C, Tsuzuku K, Kobayashi T, Kishi H, Kuroda S, Senna MJ, Mater Sci: Mater Electron (to appear)Google Scholar
  20. 20.
    Society of Powder Technology (1994) Particle size analysis and technology. Nikkan-Kogyo Shinbun shya, TokyoGoogle Scholar
  21. 21.
    Izumi F, Ikeda T (2000) Mater Sci Forum 321–324:198CrossRefGoogle Scholar
  22. 22.
    Wakamatsu T, Fujiwara T, Ishihara KN, Shingu PH (2003) J Jpn Soc Powder Metall 48:950CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Chie Ando
    • 1
  • Toshimasa Suzuki
    • 1
  • Youichi Mizuno
    • 1
  • Hiroshi Kishi
    • 1
  • Sayuri Nakayama
    • 2
  • Mamoru Senna
    • 2
    • 3
  1. 1.Material Development DepartmentTaiyo Yuden Co., Ltd.GunmaJapan
  2. 2.Technofarm AXESZ Co., Ltd.TokyoJapan
  3. 3.Faculty of Science and TechnologyKeio UniversityYokohamaJapan

Personalised recommendations