Advertisement

Journal of Materials Science

, Volume 43, Issue 19, pp 6505–6512 | Cite as

Catalytic activity of CuO-loaded TiO2/γ-Al2O3 for NO Reduction by CO

  • Jiang XiaoyuanEmail author
  • Li Huijuan
  • Zheng Xiaoming
Article

Abstract

The activities in NO + CO reaction of CuO-loaded TiO2/γ-Al2O3 catalysts prepared by precipitation (P), co-precipitation (C-P), or sol-gel (S-G) were examined using a micro-reactor-gas chromatography (GC) system. The study showed higher catalytic activity of 12%CuO/15%TiO2/γ-Al2O3 (P) than that of 12%CuO/15%TiO2/γ-Al2O3 (S-G) or 12%CuO/15%TiO2/γ-Al2O3 (C-P) in air condition, compared with higher activity of 12%CuO/15%TiO2/γ-Al2O3 (P) or 12%CuO/15%TiO2/γ-Al2O3 (S-G) than that of 12%CuO/15%TiO2/γ-Al2O3 (C-P) in H2 condition. The specific surface area and crystallite formation had little effect on catalytic activities. H2-temperature programmed reduction (TPR) revealed four reduction peaks of 12%CuO/15%TiO2/γ-Al2O3 (P), three reduction peaks of 12%CuO/15%TiO2/γ-Al2O3 (S-G), but only one reduction peak of 12%CuO/15%TiO2/γ-Al2O3 (C-P). CuO diffraction peaks were detected only in 12%CuO/15%TiO2/γ-Al2O3 (P), indicating that CuO was highly dispersed on the other two TiO2/γ-Al2O3 catalysts. As a result, 12%CuO/15%TiO2/γ-Al2O3 (P) had the highest activity of reducing NO. During NO + CO reaction, the absorption peaks of intermediate product N2O were shown at 150 °C by 12%CuO/15%TiO2/γ-Al2O3 (P), at 200 °C by 12%CuO/15%TiO2/γ-Al2O3 (S-G), and at 100 °C by 12%CuO/15%TiO2/γ-Al2O3 (C-P) after H2 pretreatment at 400 °C for 1 h.

Keywords

TiO2 Reduction Peak Raman Peak Adsorption Band Amorphous Al2O3 

Notes

Acknowledgement

The authors acknowledge financial support from the Natural Science Foundation of Zhejiang Province, China (Y504131).

References

  1. 1.
    Went GT, Leu LJ, Rosin RR (1992) J Catal 134:492. doi: https://doi.org/10.1016/0021-9517(92)90337-H CrossRefGoogle Scholar
  2. 2.
    Fritz A, Pitchon V (1997) Appl Catal B Environ 13:1. doi: https://doi.org/10.1016/S0926-3373(96)00102-6 CrossRefGoogle Scholar
  3. 3.
    Pârvulescu VI, Grange P, Delmon B (1998) Catal Today 46:233. doi: https://doi.org/10.1016/S0920-5861(98)00399-X CrossRefGoogle Scholar
  4. 4.
    Busca G, Lietti L, Ramis G, Bertl F (1998) Appl Catal B Environ 18:1CrossRefGoogle Scholar
  5. 5.
    Giakoumelou I, Fountzoula C, Kordulis C, Boghosian S (2006) J Catal 239:1. doi: https://doi.org/10.1016/j.jcat.2006.01.019 CrossRefGoogle Scholar
  6. 6.
    Iwamoto M, Yahiro H, Torikai Y (1990) Chem Lett 19:1967. doi: https://doi.org/10.1246/cl.1990.1967 CrossRefGoogle Scholar
  7. 7.
    Wollner A, Lange F (1993) Appl Catal Gen 94:181. doi: https://doi.org/10.1016/0926-860X(93)85007-C CrossRefGoogle Scholar
  8. 8.
    Larsson PO, Andersson A, Wallenberg L (1996) J Catal 163:279. doi: https://doi.org/10.1006/jcat.1996.0329 CrossRefGoogle Scholar
  9. 9.
    Amano F, Suzuki S, Yamamoto T, Tanaka T (2006) Appl Catal B Environ 64:282. doi: https://doi.org/10.1016/j.apcatb.2005.12.011 CrossRefGoogle Scholar
  10. 10.
    Jiang XY, Ding GH, Lou LP, Chen YX, Zheng XM (2004) Catal Today 93:811. doi: https://doi.org/10.1016/j.cattod.2004.06.074 CrossRefGoogle Scholar
  11. 11.
    Schneider H, Tschudin S, Schneider M (1994) J Catal 147:8Google Scholar
  12. 12.
    Santes V, Herbert J, Cortez MT (2005) Appl Catal Gen 281:121. doi: https://doi.org/10.1016/j.apcata.2004.11.025 CrossRefGoogle Scholar
  13. 13.
    Kaneko EY, Pulcinelli SH, Silva VTD, Santilli CV (2002) Appl Catal Gen 235:74. doi: https://doi.org/10.1016/S0926-860X(02)00236-3 CrossRefGoogle Scholar
  14. 14.
    Öhman LO, Paul J (2002) Mater Chem Phys 73:246Google Scholar
  15. 15.
    Hernadez T, Bautista MC (2005) J Eur Ceram Soc 25:668Google Scholar
  16. 16.
    Chidamaram PR, Meier A, Edwards GR (1996) Mater Sci Eng 206:250Google Scholar
  17. 17.
    Jason TC, Mangesh T, Abhaya B, Datye K, Davis JR (2006) J Catal 238:462Google Scholar
  18. 18.
    Szailer T, Kwak JH, Kim DH, Hanson CJ, Peden CHF, Szanyi J (2006) J Catal 239:55. doi: https://doi.org/10.1016/j.jcat.2006.01.014 CrossRefGoogle Scholar
  19. 19.
    Verrier LC, Bazin P, Saussey J, Daturi M (2003) Phys Chem 5:4425Google Scholar
  20. 20.
    Miyadera T (1998) Appl Catal B Environ 16:158CrossRefGoogle Scholar
  21. 21.
    Sylvie LK, Legros C, Claude C, Herbst F (2006) J Eur Soc 26:2225Google Scholar
  22. 22.
    Loddo V, Marcì G, Palmisano L, Sclafani A (1998) Mater Chem Phys 53:220. doi: https://doi.org/10.1016/S0254-0584(98)00041-8 CrossRefGoogle Scholar
  23. 23.
    Macleod N, Cropley R, Keel J, Lambert M (2004) J Catal 221:29. doi: https://doi.org/10.1016/j.jcat.2003.07.005 CrossRefGoogle Scholar
  24. 24.
    Huang HY, Long RQ, Yang RT (2001) Appl Catal B Environ 33:127CrossRefGoogle Scholar
  25. 25.
    Jiang XY, Lu GL, Zhou RX, Mao JX, Chen Y, Zheng XM (2001) Appl Surf Sci 173:212Google Scholar
  26. 26.
    Christodoulakis A, Machli M, Angeliki B, Lemonidou A, Boghosian S (2004) J Catal 222:293. doi: https://doi.org/10.1016/j.jcat.2003.10.007 CrossRefGoogle Scholar
  27. 27.
    Lietti INL, Tronconi LCE, Forzatti P (2006) J Catal 239:247Google Scholar
  28. 28.
    Pike J, Chan SW, Zhang F, Wang XQ, Hanson J (2006) Appl Catal Gen 303:275. doi: https://doi.org/10.1016/j.apcata.2006.02.008 CrossRefGoogle Scholar
  29. 29.
    Wu Y, Zhao Z, Liu Y, Yang XG (2000) J Mol Catal Chem 155:94. doi: https://doi.org/10.1016/S1381-1169(99)00322-2 CrossRefGoogle Scholar
  30. 30.
    Li HJ, Jiang XY, Zheng XM (2006) Acta Phys-Chim Sin 22:587Google Scholar
  31. 31.
    Hu YH, Liu TD, Shen MM (2003) J Solid State Chem 170:66. doi: https://doi.org/10.1016/S0022-4596(02)00020-8 CrossRefGoogle Scholar
  32. 32.
    Xu B, Dong L, Chen Y (1998) J Chem Soc Faraday Trans 94:907Google Scholar
  33. 33.
    Boccuzzi F, Chiorino A, Martra G, Gargano M, Ravasio N, Carrozziniz B (1997) J Catal 165:129. doi: https://doi.org/10.1006/jcat.1997.1475 CrossRefGoogle Scholar
  34. 34.
    Wei ZB, Xin Q, Guo XX (1990) Appl Catal Gen 63:310Google Scholar
  35. 35.
    Vargas A, Montoya J, Maldonado C, Hernández-pérez I, Acosta D, Morales R (2004) Micro Mater 74:9Google Scholar
  36. 36.
    Luo MF, Fang P, He M, Xie YL (2005) J Mol Catal Chem 239:248. doi: https://doi.org/10.1016/j.molcata.2005.06.029 CrossRefGoogle Scholar
  37. 37.
    Jiang XY, Ding GH, Lou LP, Chen YX, Zheng XM (2004) J Mol Catal Chem 218:193Google Scholar
  38. 38.
    Larssin PO, Andersson A (1998) J Catal 179:301Google Scholar
  39. 39.
    Li C, Li MJ (2002) J Raman Spectrosc 33:301CrossRefGoogle Scholar
  40. 40.
    Davydov AA, Budneva AA, Sokolovski VD (1990) Kinet Catal 30:1224Google Scholar
  41. 41.
    Sica A, Gigola C (2003) Appl Catal Gen 239:121. doi: https://doi.org/10.1016/S0926-860X(02)00380-0 CrossRefGoogle Scholar
  42. 42.
    Macleod N, Cropley R, Keel J, Lambert M, Richard M (2004) J Catal 221:20. doi: https://doi.org/10.1016/j.jcat.2003.07.005 CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Novak E, Solymosi F (1990) J Catal 125:112. doi: https://doi.org/10.1016/0021-9517(90)90082-U CrossRefGoogle Scholar
  45. 45.
    London JW, Bell ATJ (1973) Catal 31:100Google Scholar
  46. 46.
    Sica AM, Gigola CE (2003) Appl Catal Gen 239:125. doi: https://doi.org/10.1016/S0926-860X(02)00380-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of Science, Institute of CatalysisZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations