Advertisement

Journal of Materials Science

, Volume 44, Issue 9, pp 2288–2299 | Cite as

Wear characteristics of spray formed Al-alloys and their composites

  • V. C. Srivastava
  • G. B. Rudrakshi
  • V. Uhlenwinkel
  • S. N. OjhaEmail author
Festschrift in honour of Prof T R Anantharaman on the occasion of his 80th birthday

Abstract

In the present investigation, different Al based alloys such as Al–Si–Pb, Al–Si, Al–Si–Fe and 2014Al + SiC composites have been produced by spray forming process. The microstructural features of monolithic alloys and composite materials have been examined and their wear characteristics have been evaluated at different loads and sliding velocities. The microstructural features invariably showed a significant refinement of the primary phases and also modification of secondary phases in Al-alloys. The Pb particles in Al–Si–Pb alloy were observed to be uniformly distributed in the matrix phase besides decorating the grain boundaries. The spray formed composites showed uniform distribution of SiC particles in the matrix. It was observed that wear resistance of Al–Si alloy increases with increase in Pb content; however, there is not much improvement after addition of Pb more than 20%. The coefficient of friction reduced to 0.2 for the alloy containing 20%Pb. A sliding velocity of 1 ms−1 was observed to be optimum for high wear resistance of these materials. Alloying elements such as Fe and Cu in Al–Si alloy lead to improved wear resistance compared to that of the base alloy. The addition of SiC in 2014Al alloy gave rise to considerable improvement in wear resistance but primarily in the low pressure regime. The wear rate seemed to decrease with increase in sliding velocity. The wear response of the materials has been discussed in light of their microstructural features and topographical observation of worn surfaces.

Keywords

Wear Resistance Wear Rate Wear Surface Applied Pressure Wear Behaviour 

References

  1. 1.
  2. 2.
    Mohan S, Agarwala V, Ray S (1992) Wear 157:9. doi: https://doi.org/10.1016/0043-1648(92)90184-A CrossRefGoogle Scholar
  3. 3.
    Alkemper J, Ratke L (1994) Z Metallk 85:365Google Scholar
  4. 4.
    Rudrakshi GB, Srivastava VC, Ojha SN (2007) Mater Sci Eng A 457:100. doi: https://doi.org/10.1016/j.msea.2006.12.024 CrossRefGoogle Scholar
  5. 5.
    Lloyd DJ (1994) Int Mater Rev 39:1CrossRefGoogle Scholar
  6. 6.
    Ratke L, Diefenbach S (1995) Mater Sci Eng Rep 15:1. doi: https://doi.org/10.1016/0927-796X(95)00180-8 CrossRefGoogle Scholar
  7. 7.
    Al-Rubaie KS, Goldenstein H, De Mello JDB (1999) Wear 225–229:163. doi: https://doi.org/10.1016/S0043-1648(99)00009-5 CrossRefGoogle Scholar
  8. 8.
    Bindumadhavan PN, Chia TK, Chandrasekaran M, Wah MK, Lam NK, Prabhakar O (2001) Mater Sci Eng A 315:217CrossRefGoogle Scholar
  9. 9.
    Muratoglu M, Aksoy M (2006) J Mater Proc Tech 174:272. doi: https://doi.org/10.1016/j.jmatprotec.2006.01.010 CrossRefGoogle Scholar
  10. 10.
    Tenekedjiev N, Gruzleski JE (1990) Cast Metab 3:96CrossRefGoogle Scholar
  11. 11.
    Jorstad JL (1971) AFS Trans 79:85Google Scholar
  12. 12.
    Midling OT, Grong O (1995) Key Eng Mater 104–107:329CrossRefGoogle Scholar
  13. 13.
    Srivastava VC, Mandal RK, Ojha SN (2004) Mater Sci Eng A 383:14. doi: https://doi.org/10.1016/j.msea.2004.02.031 CrossRefGoogle Scholar
  14. 14.
    Wu Y, Lavernia EJ (1992) Metab Mater Trans A 23:2923. doi: https://doi.org/10.1007/BF02651770 CrossRefGoogle Scholar
  15. 15.
    Wu Y, Cassada WA, Lavernia EJ (1995) Metab Mater Trans A 26:1235. doi: https://doi.org/10.1007/BF02670618 CrossRefGoogle Scholar
  16. 16.
    Chiang CH, Tsao CYA (2005) Mater Sci Eng A 396:263. doi: https://doi.org/10.1016/j.msea.2005.01.017 CrossRefGoogle Scholar
  17. 17.
    Srivastava VC, Schneider A, Uhlenwinkel V, Bauckhage K (2005) Mater Sci Eng A 412:19CrossRefGoogle Scholar
  18. 18.
    Tham LM, Gupta M, Cheng L (1999) J Mater Process Technol 89–90:128. doi: https://doi.org/10.1016/S0924-0136(99)00002-3 CrossRefGoogle Scholar
  19. 19.
    Zambon A, Badan B, Maddalena A (2004) Mater Sci Eng A 375–377:645. doi: https://doi.org/10.1016/j.msea.2003.10.229 CrossRefGoogle Scholar
  20. 20.
    Lavernia EJ, Wu Y (1996) Spray atomization and deposition. Wiley, West Sussex, EnglandGoogle Scholar
  21. 21.
    Grant PS (1995) Prog Mater Sci 39:497CrossRefGoogle Scholar
  22. 22.
    Srivastava VC, Schneider A, Uhlenwinkel V, Ojha SN, Bauckhage K (2005) Trans Ind Inst Met 58:91Google Scholar
  23. 23.
    Ojha KV, Tomar A, Singh D, Kaushal GC (2008) Mater Sci Eng A 487:591CrossRefGoogle Scholar
  24. 24.
    Lim SC, Gupta M, Leng YF, Lavernia EJ (1997) J Mater Proc Tech 63:865CrossRefGoogle Scholar
  25. 25.
    Elmadagli M, Perry T, Alpas AT (2007) Wear 262:79CrossRefGoogle Scholar
  26. 26.
    Srivastava VC, Ojha SN (2004) Mater Sci Tech 20:1632CrossRefGoogle Scholar
  27. 27.
    Gouthama, Rudrakshi GB, Ojha SN (2007) J Mater Proc Tech 189:224Google Scholar
  28. 28.
    Chen Z, Teng J, Chen G, Fu D, Yan H (2007) Wear 262:362CrossRefGoogle Scholar
  29. 29.
    Lim SC, Gupta M, Ren L, Kwok JKM (1999) J Mater Proc Tech 89–90:591CrossRefGoogle Scholar
  30. 30.
    Schneider A, Srivastava VC, Uhlenwinkel V, Bauckhage K (2004) Z Metallk 95:763CrossRefGoogle Scholar
  31. 31.
    Srivastava VC, Mandal RK, Ojha SN, Venkateswarlu K (2007) Mater Sci Eng A 471:38CrossRefGoogle Scholar
  32. 32.
    Srivastava VC, Ghoshal P, Ojha SN (2002) Mater Lett 56:797CrossRefGoogle Scholar
  33. 33.
    Hirst W, Lancaster JK (1956) J Appl Phys 27:1057CrossRefGoogle Scholar
  34. 34.
    Davis FA, Eyre TS (1994) Tribol Int 27:171CrossRefGoogle Scholar
  35. 35.
    Antoniou A, Boraland DW (1987) Mater Sci Eng A 93:57CrossRefGoogle Scholar
  36. 36.
    Amateau MF, Lee DS, Conway JC (1996) In: Wood JV (ed) Proc 3rd Int Conf ‘Spray forming’ (ICSF-3). Cardiff, UK, p 321Google Scholar
  37. 37.
    Gui M, Kang SB, Lee JM (2000) Mater Sci Eng A 293:146CrossRefGoogle Scholar
  38. 38.
    Alpas AT, Zhang J (1999) Metall Mater Trans A 25:969CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • V. C. Srivastava
    • 1
    • 2
  • G. B. Rudrakshi
    • 3
  • V. Uhlenwinkel
    • 2
  • S. N. Ojha
    • 4
    Email author
  1. 1.Metal Extraction & Forming DivisionNational Metallurgical LaboratoryJamshedpurIndia
  2. 2.Institut für WerkstofftechnikUniversität BremenBremenGermany
  3. 3.Department of Mechanical EngineeringBasaveshwar Engineering CollegeBagalkotIndia
  4. 4.Department of Metallurgical EngineeringBanaras Hindu UniversityVaranasiIndia

Personalised recommendations